Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
category_._set_theory [2014/04/07 19:00]
nikolaj
category_._set_theory [2014/04/07 19:06]
nikolaj old revision restored (2014/04/07 17:19)
Line 4: Line 4:
 | @#FFBB00: definiendum | @#FFBB00: $ \langle \mathcal{O},​M,​id,​* \rangle \in \mathrm{it}$ | | @#FFBB00: definiendum | @#FFBB00: $ \langle \mathcal{O},​M,​id,​* \rangle \in \mathrm{it}$ |
 | @#FF9944: definition ​ | @#FF9944: $\mathrm{Mor}:​\mathcal{O}\times\mathcal{O}\to M$ | | @#FF9944: definition ​ | @#FF9944: $\mathrm{Mor}:​\mathcal{O}\times\mathcal{O}\to M$ |
-| @#FF9944: definition ​ | @#FF9944: $\circ:​{\large\prod}_{A,​B,​C\in\mathcal{O}}\,​\mathrm{Mor}(B,​C)\times\mathrm{Mor}(A,​B)\to\mathrm{Mor}(A,​C)$ | +| @#FF9944: definition ​ | @#FF9944: $\circ:​{\large\prod}_{A,​B,​C:\mathcal{O}}\,​\mathrm{Mor}(B,​C)\times\mathrm{Mor}(A,​B)\to\mathrm{Mor}(A,​C)$ | 
-| @#FF9944: definition ​ | @#FF9944: $id:​{\large\prod}_{A\in\mathcal{O}}\,​\mathrm{Mor}_O(A,​A)$ |+| @#FF9944: definition ​ | @#FF9944: $id:​{\large\prod}_{A:\mathcal{O}}\,​\mathrm{Mor}_O(A,​A)$ |
 | @#55EE55: postulate ​  | @#55EE55: $\mathrm{Mor}(A,​B)\cap\mathrm{Mor}(U,​V)\ne\emptyset\implies A=B\land U=V$ | | @#55EE55: postulate ​  | @#55EE55: $\mathrm{Mor}(A,​B)\cap\mathrm{Mor}(U,​V)\ne\emptyset\implies A=B\land U=V$ |
 | @#55EE55: postulate ​  | @#55EE55: $(g\circ f)\circ h=g\circ (f\circ h)$ | | @#55EE55: postulate ​  | @#55EE55: $(g\circ f)\circ h=g\circ (f\circ h)$ |
-| @#55EE55: postulate ​  | @#55EE55: $f\circ ​id(A)=id(A)\circ f=f$ |+| @#55EE55: postulate ​  | @#55EE55: $f\circ ​id_A=id_A\circ f=f$ |
  
 ==== Discussion ==== ==== Discussion ====
-Within set theory, we can define a category as quintuple given by two sets and two maps into them. The $\prod$-notation giving the set theoretical model for polymorphic functions, is given in [[function]].+Within set theory, we can define a category as quintuple given by two sets and two (polymorphic) ​maps into them. 
  
 The three axioms say the following: The hom-sets are pairwise disjoint, the composition is associative and $id$ denotes the identity. The three axioms say the following: The hom-sets are pairwise disjoint, the composition is associative and $id$ denotes the identity.
Link to graph
Log In
Improvements of the human condition