Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
classical_density_of_states [2016/03/09 12:47]
nikolaj
classical_density_of_states [2016/03/09 12:48]
nikolaj
Line 24: Line 24:
 More generally, for an dispersion relation $E=E_0+a\,​k^p$ in an $n$-dimensional space (volume of the space being $b\,k^n$), the density is  More generally, for an dispersion relation $E=E_0+a\,​k^p$ in an $n$-dimensional space (volume of the space being $b\,k^n$), the density is 
  
-$D(E) = \dfrac{c_n}{c_k^r}\dfrac{\mathrm d}{{\mathrm d}E}(E-E_0)^r$,​ where $r:​=\tfrac{n}{p}$.+$D(E) = \dfrac{c_n}{c_k^r}\dfrac{\mathrm d}{{\mathrm d}E}(E-E_0)^r=r\,​\dfrac{c_n}{c_k^r}(E-E_0)^{r-1}$, where $r:​=\tfrac{n}{p}$.
  
 ----- -----
 === Context === === Context ===
 [[Classical confined phase volume]] [[Classical confined phase volume]]
Link to graph
Log In
Improvements of the human condition