Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
classical_density_of_states [2016/03/09 12:47]
nikolaj
classical_density_of_states [2016/03/09 12:49]
nikolaj
Line 22: Line 22:
 ^ $ D(E) = 2\pi\ 2\frac{V}{(2\pi)^3}(\hbar c)^{-3}\cdot E^2 $ ^ ^ $ D(E) = 2\pi\ 2\frac{V}{(2\pi)^3}(\hbar c)^{-3}\cdot E^2 $ ^
  
-More generally, for an dispersion relation $E=E_0+a\,k^p$ in an $n$-dimensional space (volume of the space being $b\,k^n$), the density is +More generally, for an dispersion relation $E=E_0+c_k\,k^p$ in an $n$-dimensional space (volume of the space being $c_n\,k^n$), the density is 
  
-$D(E) = \dfrac{c_n}{c_k^r}\dfrac{\mathrm d}{{\mathrm d}E}(E-E_0)^r$,​ where $r:​=\tfrac{n}{p}$.+$D(E) = \dfrac{c_n}{c_k^r}\dfrac{\mathrm d}{{\mathrm d}E}(E-E_0)^r=r\,​\dfrac{c_n}{c_k^r}(E-E_0)^{r-1}$, where $r:​=\tfrac{n}{p}$.
  
 ----- -----
 === Context === === Context ===
 [[Classical confined phase volume]] [[Classical confined phase volume]]
Link to graph
Log In
Improvements of the human condition