Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Last revision Both sides next revision
classical_density_of_states [2016/03/09 12:48]
nikolaj
classical_density_of_states [2016/03/09 12:49]
nikolaj
Line 22: Line 22:
 ^ $ D(E) = 2\pi\ 2\frac{V}{(2\pi)^3}(\hbar c)^{-3}\cdot E^2 $ ^ ^ $ D(E) = 2\pi\ 2\frac{V}{(2\pi)^3}(\hbar c)^{-3}\cdot E^2 $ ^
  
-More generally, for an dispersion relation $E=E_0+a\,k^p$ in an $n$-dimensional space (volume of the space being $b\,k^n$), the density is +More generally, for an dispersion relation $E=E_0+c_k\,k^p$ in an $n$-dimensional space (volume of the space being $c_n\,k^n$), the density is 
  
 $D(E) = \dfrac{c_n}{c_k^r}\dfrac{\mathrm d}{{\mathrm d}E}(E-E_0)^r=r\,​\dfrac{c_n}{c_k^r}(E-E_0)^{r-1}$,​ where $r:​=\tfrac{n}{p}$. $D(E) = \dfrac{c_n}{c_k^r}\dfrac{\mathrm d}{{\mathrm d}E}(E-E_0)^r=r\,​\dfrac{c_n}{c_k^r}(E-E_0)^{r-1}$,​ where $r:​=\tfrac{n}{p}$.
Link to graph
Log In
Improvements of the human condition