Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
classical_phase_density [2015/08/16 16:09]
nikolaj
classical_phase_density [2015/08/18 20:27]
nikolaj
Line 2: Line 2:
 ==== Set ==== ==== Set ====
 | @#55CCEE: context ​    | @#55CCEE: $ \langle \mathcal M, H\rangle$ ... classical Hamiltonian system | | @#55CCEE: context ​    | @#55CCEE: $ \langle \mathcal M, H\rangle$ ... classical Hamiltonian system |
- 
 | @#FFBB00: definiendum | @#FFBB00: $ {\hat\rho} \in \mathrm{it} $ | | @#FFBB00: definiendum | @#FFBB00: $ {\hat\rho} \in \mathrm{it} $ |
- 
 | @#55EE55: postulate ​  | @#55EE55: $\langle \mathcal M, H\rangle$ ... Hamiltonian system | | @#55EE55: postulate ​  | @#55EE55: $\langle \mathcal M, H\rangle$ ... Hamiltonian system |
 | @#DDDDDD: range       | @#DDDDDD: $ \Gamma_{\mathcal M} \equiv \mathcal M\times T\mathcal M $ | | @#DDDDDD: range       | @#DDDDDD: $ \Gamma_{\mathcal M} \equiv \mathcal M\times T\mathcal M $ |
 | @#55EE55: postulate ​  | @#55EE55: $\hat\rho: \Gamma_{\mathcal M} \times \mathbb R \to \mathbb R_+ $ | | @#55EE55: postulate ​  | @#55EE55: $\hat\rho: \Gamma_{\mathcal M} \times \mathbb R \to \mathbb R_+ $ |
 | @#DDDDDD: range       | @#DDDDDD: $\hat\rho:: \hat\rho({\bf q},{\bf p},t) $ | | @#DDDDDD: range       | @#DDDDDD: $\hat\rho:: \hat\rho({\bf q},{\bf p},t) $ |
- 
-Continuity equation: 
- 
 | @#55EE55: postulate ​  | @#55EE55: $ \frac{\partial}{\partial t}{\hat\rho} = - \nabla ({\hat\rho} \cdot X_H )$ | | @#55EE55: postulate ​  | @#55EE55: $ \frac{\partial}{\partial t}{\hat\rho} = - \nabla ({\hat\rho} \cdot X_H )$ |
  
->todo: Total derivative+>todo: Total derivative ​for the '​Continuity equation'​ (last postulate)
 >todo: Hamiltonian vector field >todo: Hamiltonian vector field
  
Line 32: Line 27:
  
 === Volume in statistical physics === === Volume in statistical physics ===
-A characteristic volume $V$ may be given by an integral over the spatial part of ${\mathcal M}$. This is e.g. how $V$ arises in the statistical mechanics derivation in the classical setting of the ideal gas law $p := -\frac{\partial}{\partial V}\langle{H}\rangle = \frac{N}{V}\cdot k_B T$. Introducing the density $n=\frac{N}{V}$,​ this holds true for infinite volumes.+A characteristic volume $V$ may be given by an integral over the spatial part of ${\mathcal M}$. This is e.g. how $V$ arises in the statistical mechanics derivation in the classical setting of the ideal gas law $p := -\frac{\partial}{\partial V}\langle{H}\rangle = \frac{N}{V}\cdot k_B T$. See also [[https://​en.wikipedia.org/​wiki/​Cluster_expansion|Cluster expansion]].  
 +Introducing the density $n=\frac{N}{V}$,​ this holds true for infinite volumes.
 In the derivation via quantum gases in an infinite volume, a volume parameter is introduced in when the momenta are quantized (see [[Classical density of states]]). In the derivation via quantum gases in an infinite volume, a volume parameter is introduced in when the momenta are quantized (see [[Classical density of states]]).
  
Line 42: Line 38:
 Wikipedia: ​ Wikipedia: ​
 [[http://​en.wikipedia.org/​wiki/​Continuity_equation|Continuity equation]], [[http://​en.wikipedia.org/​wiki/​Continuity_equation|Continuity equation]],
-[[http://​en.wikipedia.org/​wiki/​Liouville%27s_theorem_%28Hamiltonian%29|Liouville equations]]+[[http://​en.wikipedia.org/​wiki/​Liouville%27s_theorem_%28Hamiltonian%29|Liouville equations]], 
 +[[https://​en.wikipedia.org/​wiki/​Cluster_expansion|Cluster expansion]]
  
 ----- -----
Link to graph
Log In
Improvements of the human condition