Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
classical_phase_density [2015/08/16 18:10]
nikolaj
classical_phase_density [2015/08/18 20:29]
nikolaj
Line 2: Line 2:
 ==== Set ==== ==== Set ====
 | @#55CCEE: context ​    | @#55CCEE: $ \langle \mathcal M, H\rangle$ ... classical Hamiltonian system | | @#55CCEE: context ​    | @#55CCEE: $ \langle \mathcal M, H\rangle$ ... classical Hamiltonian system |
- 
 | @#FFBB00: definiendum | @#FFBB00: $ {\hat\rho} \in \mathrm{it} $ | | @#FFBB00: definiendum | @#FFBB00: $ {\hat\rho} \in \mathrm{it} $ |
- 
 | @#55EE55: postulate ​  | @#55EE55: $\langle \mathcal M, H\rangle$ ... Hamiltonian system | | @#55EE55: postulate ​  | @#55EE55: $\langle \mathcal M, H\rangle$ ... Hamiltonian system |
 | @#DDDDDD: range       | @#DDDDDD: $ \Gamma_{\mathcal M} \equiv \mathcal M\times T\mathcal M $ | | @#DDDDDD: range       | @#DDDDDD: $ \Gamma_{\mathcal M} \equiv \mathcal M\times T\mathcal M $ |
 | @#55EE55: postulate ​  | @#55EE55: $\hat\rho: \Gamma_{\mathcal M} \times \mathbb R \to \mathbb R_+ $ | | @#55EE55: postulate ​  | @#55EE55: $\hat\rho: \Gamma_{\mathcal M} \times \mathbb R \to \mathbb R_+ $ |
 | @#DDDDDD: range       | @#DDDDDD: $\hat\rho:: \hat\rho({\bf q},{\bf p},t) $ | | @#DDDDDD: range       | @#DDDDDD: $\hat\rho:: \hat\rho({\bf q},{\bf p},t) $ |
- 
-Continuity equation: 
- 
 | @#55EE55: postulate ​  | @#55EE55: $ \frac{\partial}{\partial t}{\hat\rho} = - \nabla ({\hat\rho} \cdot X_H )$ | | @#55EE55: postulate ​  | @#55EE55: $ \frac{\partial}{\partial t}{\hat\rho} = - \nabla ({\hat\rho} \cdot X_H )$ |
  
->todo: Total derivative+>todo: Total derivative ​for the '​Continuity equation'​ (last postulate)
 >todo: Hamiltonian vector field >todo: Hamiltonian vector field
  
Line 30: Line 25:
 ^ $ \frac{\mathrm d}{\mathrm dt}{\hat\rho}(\pi(t),​t)=0 $ ^ ^ $ \frac{\mathrm d}{\mathrm dt}{\hat\rho}(\pi(t),​t)=0 $ ^
 where $\pi$ is the solution of the [[Hamiltonian equations]]. where $\pi$ is the solution of the [[Hamiltonian equations]].
- 
-=== Volume in statistical physics === 
-A characteristic volume $V$ may be given by an integral over the spatial part of ${\mathcal M}$. This is e.g. how $V$ arises in the statistical mechanics derivation in the classical setting of the ideal gas law $p := -\frac{\partial}{\partial V}\langle{H}\rangle = \frac{N}{V}\cdot k_B T$. See also [[https://​en.wikipedia.org/​wiki/​Cluster_expansion|Cluster expansion]]. ​ 
-Introducing the density $n=\frac{N}{V}$,​ this holds true for infinite volumes. 
-In the derivation via quantum gases in an infinite volume, a volume parameter is introduced in when the momenta are quantized (see [[Classical density of states]]). 
- 
-A remark on the latter case: Note that the physical constants $\hbar$ and $c$ can be used to translate energy to frequency (or time) and further translates time to length. Using this, we can write down models involving a volume parameter $V$, defining a characteristic energy $\frac{(\hbar c)^3}{V}$. This may then e.g. be embedded via (unitless!) expressions as complicated as  
- 
-$\frac{V}{(\hbar c)^3}\int {\mathrm d}E\, f(\frac{V}{(\hbar c)^3}E)$. 
  
 === Reference === === Reference ===
Link to graph
Log In
Improvements of the human condition