# Differences

This shows you the differences between two versions of the page.

 complex_exponents_with_positive_real_bases [2015/04/15 14:12]nikolaj complex_exponents_with_positive_real_bases [2015/04/15 14:13] (current)nikolaj Both sides previous revision Previous revision 2015/04/15 14:13 nikolaj 2015/04/15 14:12 nikolaj 2015/04/15 14:11 nikolaj 2015/04/15 14:11 nikolaj 2015/01/12 18:43 nikolaj 2015/01/12 18:41 nikolaj 2014/03/21 11:11 external edit2013/09/08 15:14 nikolaj 2013/09/07 20:26 nikolaj 2013/09/07 20:26 nikolaj 2013/09/07 20:25 nikolaj 2013/09/07 20:23 nikolaj 2013/09/07 20:20 nikolaj 2013/09/07 20:20 nikolaj 2013/09/07 20:20 nikolaj 2013/09/07 20:17 nikolaj created 2015/04/15 14:13 nikolaj 2015/04/15 14:12 nikolaj 2015/04/15 14:11 nikolaj 2015/04/15 14:11 nikolaj 2015/01/12 18:43 nikolaj 2015/01/12 18:41 nikolaj 2014/03/21 11:11 external edit2013/09/08 15:14 nikolaj 2013/09/07 20:26 nikolaj 2013/09/07 20:26 nikolaj 2013/09/07 20:25 nikolaj 2013/09/07 20:23 nikolaj 2013/09/07 20:20 nikolaj 2013/09/07 20:20 nikolaj 2013/09/07 20:20 nikolaj 2013/09/07 20:17 nikolaj created Line 13: Line 13: says that exponentiation is a (the) homomorphism between $+$ and $\cdot$. says that exponentiation is a (the) homomorphism between $+$ and $\cdot$. - The combinatorial manifestation,​ e.g. formulated in for $B,​X_1,​\dots\in\bf{Set}$,​ is + The combinatorial manifestation,​ e.g. formulated in for $B,X_1,X_2,​\dots\in\bf{Set}$,​ is $B^{\coprod_{j\in J}X_j}\cong\prod_{j\in J} B^{X_j}$ $B^{\coprod_{j\in J}X_j}\cong\prod_{j\in J} B^{X_j}$