# Differences

This shows you the differences between two versions of the page.

 complex_line_integral [2015/04/03 12:15]nikolaj complex_line_integral [2015/04/03 12:15] (current)nikolaj Both sides previous revision Previous revision 2015/04/03 12:15 nikolaj 2015/04/03 12:15 nikolaj 2015/02/03 09:58 nikolaj 2015/02/03 09:55 nikolaj 2014/03/21 11:11 external edit2014/02/25 21:11 nikolaj 2014/02/25 21:11 nikolaj 2014/02/25 21:11 nikolaj 2014/02/25 21:10 nikolaj 2014/02/25 21:10 nikolaj 2014/02/25 21:09 nikolaj 2014/02/25 21:06 nikolaj 2014/02/25 21:06 nikolaj 2014/02/25 21:05 nikolaj old revision restored (2014/02/25 20:52) 2015/04/03 12:15 nikolaj 2015/04/03 12:15 nikolaj 2015/02/03 09:58 nikolaj 2015/02/03 09:55 nikolaj 2014/03/21 11:11 external edit2014/02/25 21:11 nikolaj 2014/02/25 21:11 nikolaj 2014/02/25 21:11 nikolaj 2014/02/25 21:10 nikolaj 2014/02/25 21:10 nikolaj 2014/02/25 21:09 nikolaj 2014/02/25 21:06 nikolaj 2014/02/25 21:06 nikolaj 2014/02/25 21:05 nikolaj old revision restored (2014/02/25 20:52) Line 7: Line 7: | @#FFBB00: definiendum | @#FFBB00: $\int_L\ f(z)\,​\mathrm dz:=\int_L\ f\left(\gamma(t)\right)\cdot \gamma'​(t)\,​ \mathrm dt$ | | @#FFBB00: definiendum | @#FFBB00: $\int_L\ f(z)\,​\mathrm dz:=\int_L\ f\left(\gamma(t)\right)\cdot \gamma'​(t)\,​ \mathrm dt$ | - ----- >todo: [[Continuously differentiable finite lines]] >todo: [[Continuously differentiable finite lines]] + + ----- === Theorems === === Theorems === If $f$ is holomorphic and two curves $L_1,L_2$ can be deformed into each other, then If $f$ is holomorphic and two curves $L_1,L_2$ can be deformed into each other, then