Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
cumulative_distribution_function [2015/04/09 15:40]
nikolaj
cumulative_distribution_function [2015/04/09 16:14]
nikolaj
Line 15: Line 15:
 > >
 >Any linear function of evaluated points are examples for $S$.  >Any linear function of evaluated points are examples for $S$. 
->So for ${\mathbb D}={\mathbb N}$ the general case is $Sf:​=\sum_{n=0}^\infty ​b_n\cdot f(n)$, where $(b_n)$ is some suitable sequence. +>So for ${\mathbb D}={\mathbb N}$ the general case is $Sf:​=\sum_{n=0}^\infty ​(L_nf)(n)$, where $(L_n)$ is suitable sequence ​of linear operations (e.g. differential operators)
->For ${\mathbb D}={\mathbb R}^m$ we have integrals.+>For ${\mathbb D}\subseteq{\mathbb R}^m$ we have integrals.
 > >
 > >
Line 27: Line 27:
 >has >has
 >​$\sum_{n=0}^\infty \bar{a}(n)=1$ >​$\sum_{n=0}^\infty \bar{a}(n)=1$
-> 
->Same with $f:​[d_1,​d_2]\to{\mathbb R}_{\ge 0}$ a function over a real interval and integration 
  
 >The "​monomial bump" on $[-d,d]$, which goes against the constant probability $\frac{1}{2d}$ for large $n$: >The "​monomial bump" on $[-d,d]$, which goes against the constant probability $\frac{1}{2d}$ for large $n$:
Link to graph
Log In
Improvements of the human condition