Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
cumulative_distribution_function [2015/04/09 15:40]
nikolaj
cumulative_distribution_function [2015/04/09 16:16]
nikolaj
Line 14: Line 14:
 >So we can use such $S$ to normalize functions. >So we can use such $S$ to normalize functions.
 > >
->Any linear function of evaluated points are examples for $S$.  +>For ${\mathbb D}={\mathbb N}$ the general case is $Sf:​=\sum_{n=0}^\infty ​(L_nf)(n)$, where $(L_n)$ is suitable sequence ​of linear operations (e.g. differential operators). For $L_n={\mathrm{id}}$ we get the standard sum (see below)
->So for ${\mathbb D}={\mathbb N}$ the general case is $Sf:​=\sum_{n=0}^\infty ​b_n\cdot f(n)$, where $(b_n)$ is some suitable sequence. +>For ${\mathbb D}\subseteq{\mathbb R}^m$ we have integrals.
->For ${\mathbb D}={\mathbb R}^m$ we have integrals.+
 > >
 > >
Line 27: Line 26:
 >has >has
 >​$\sum_{n=0}^\infty \bar{a}(n)=1$ >​$\sum_{n=0}^\infty \bar{a}(n)=1$
-> 
->Same with $f:​[d_1,​d_2]\to{\mathbb R}_{\ge 0}$ a function over a real interval and integration 
  
 >The "​monomial bump" on $[-d,d]$, which goes against the constant probability $\frac{1}{2d}$ for large $n$: >The "​monomial bump" on $[-d,d]$, which goes against the constant probability $\frac{1}{2d}$ for large $n$:
Link to graph
Log In
Improvements of the human condition