Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
euler-lagrange_equations [2015/03/29 18:33]
nikolaj
euler-lagrange_equations [2015/03/29 18:58]
nikolaj
Line 1: Line 1:
 ===== Euler-Lagrange equations ===== ===== Euler-Lagrange equations =====
 ==== Set ==== ==== Set ====
-| @#55CCEE: context ​    | @#55CCEE: $ s\in\mathbb N $ | +| @#55CCEE: context ​    | @#55CCEE: $s\in\mathbb N $ | 
-| @#55CCEE: context ​    | @#55CCEE: $ L:​C^2(\mathbb R^s\times\mathbb R^s\times\mathbb R,\mathbb R) $ | +| @#55CCEE: context ​    | @#55CCEE: $L:​C^2(\mathbb R^s\times\mathbb R^s\times\mathbb R,\mathbb R) $ | 
-| @#FFBB00: definiendum | @#FFBB00: $ q \in \mathrm{it} ​$ | +| @#FFBB00: definiendum | @#FFBB00: $q\in$ ​it 
-| @#AAFFAA: inclusion ​  | @#AAFFAA: $ q:C(\mathbb R,\mathbb R^s) $  |+| @#AAFFAA: inclusion ​  | @#AAFFAA: $q:​C(\mathbb R,\mathbb R^s) $  |
 | @#BBDDEE: let         | @#BBDDEE: $\diamond\ q(t)$ |  | @#BBDDEE: let         | @#BBDDEE: $\diamond\ q(t)$ | 
 | @#BBDDEE: let         | @#BBDDEE: $\diamond\ L(x^1,​\dots,​x^s,​v^1,​\dots,​v^s,​t)$ |  | @#BBDDEE: let         | @#BBDDEE: $\diamond\ L(x^1,​\dots,​x^s,​v^1,​\dots,​v^s,​t)$ | 
-| @#DDDDDD: range       | @#DDDDDD: $j\in\mathrm{range}(s)$ |+| @#DDDDDD: range       | @#DDDDDD: $j\in\{1,\dots,s\}$ |
 | @#55EE55: postulate ​  | @#55EE55: $\left(\dfrac{\mathrm d}{\mathrm dt}\dfrac{\partial L}{\partial v^j}\right)(q,​q',​t) - \dfrac{\partial L}{\partial x^j}(q,​q',​t) = 0$  | | @#55EE55: postulate ​  | @#55EE55: $\left(\dfrac{\mathrm d}{\mathrm dt}\dfrac{\partial L}{\partial v^j}\right)(q,​q',​t) - \dfrac{\partial L}{\partial x^j}(q,​q',​t) = 0$  |
  
Line 28: Line 28:
 === Theorems === === Theorems ===
 == Least action principle == == Least action principle ==
-A curve $q_\text{sol}$ being a solition to the Euler-Lagrange equations is equivalent to the following: For any sufficiently small time interval $(t_i,​t_{i+1})$,​ the functional+A curve $q_\text{sol}$ being a solition to the Euler-Lagrange equations is implied by the following: For any sufficiently small time interval $(t_i,​t_{i+1})$,​ the functional
  
 $S(t_i,​t_{i+1})[q]=\int_{t_i}^{t_{i+1}}L(q,​q',​t)\,​{\mathrm dt}.$ $S(t_i,​t_{i+1})[q]=\int_{t_i}^{t_{i+1}}L(q,​q',​t)\,​{\mathrm dt}.$
Link to graph
Log In
Improvements of the human condition