Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
euler_beta_function [2015/01/13 13:17]
nikolaj
euler_beta_function [2015/11/13 17:07]
nikolaj
Line 1: Line 1:
 ===== Euler beta function ===== ===== Euler beta function =====
 ==== Function ==== ==== Function ====
-| @#FFBB00definiendum ​| @#FFBB00: $ {\mathrm B}: \{z\ |\ \mathfrak{R}(z) > 0 \}^2 \to \mathbb C$ | +| @#FF9944definition  ​| @#FF9944: $ {\mathrm B}: \{z\ |\ \mathfrak{R}(z) > 0 \}^2 \to \mathbb C$ | 
-| @#FFBB00definiendum ​| @#FFBB00: $ {\mathrm B}(p,q) := \int_0^1 \tau^{p-1}(1-\tau)^{q-1}\,​\mathrm d\tau $ |+| @#FF9944definition  ​| @#FF9944: $ {\mathrm B}(p,q) := \int_0^1 \tau^{p-1}(1-\tau)^{q-1}\,​\mathrm d\tau $ |
  
 ----- -----
Line 10: Line 10:
 For natural numbers For natural numbers
  
-  * $\dfrac{1}{{\mathrm B}(x,y)} = \frac{x\,​y}{x+y} \prod_{n=1}^\infty \left( 1 + \dfrac{x\,​y}{n\,​(x+y+n)}\right)$ 
   * ${\large{n \choose k}}=(n+1)\cdot\dfrac{1}{{\mathrm B}(n-k+1,​k+1)}$   * ${\large{n \choose k}}=(n+1)\cdot\dfrac{1}{{\mathrm B}(n-k+1,​k+1)}$
 +
 +  * $\dfrac{1}{{\mathrm B}(x,y)} = \frac{x\,​y}{x+y} \prod_{n=1}^\infty \left( 1 + \dfrac{x\,​y}{n\,​(x+y+n)}\right)$
  
 === Reference === === Reference ===
Link to graph
Log In
Improvements of the human condition