Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
factorial_function [2015/11/14 03:07]
nikolaj
factorial_function [2015/12/14 18:26]
nikolaj
Line 1: Line 1:
 ===== Factorial function ===== ===== Factorial function =====
-==== Set ====+==== Function ​====
 | @#FFBB00: definiendum | @#FFBB00: $!: \mathbb N\to \mathbb N$ | | @#FFBB00: definiendum | @#FFBB00: $!: \mathbb N\to \mathbb N$ |
 | @#FFBB00: definiendum | @#FFBB00: $n\mapsto n!:​=\prod_{k=1}^n\ k $ | | @#FFBB00: definiendum | @#FFBB00: $n\mapsto n!:​=\prod_{k=1}^n\ k $ |
Line 8: Line 8:
  
 === Discussion === === Discussion ===
-Thinking of $n!=\frac{{\mathrm d}^n}{{\mathrm d}x}x^n$ and Fermat theory, I though there must be an expression for $n!$ which is more algebraic and indeed I found+Thinking of $n!=\left.\frac{{\mathrm d}^n}{{\mathrm d}x^n}\right|_{x=0}x^n$ and Fermat theory, I though there must be an expression for $n!$ which is more algebraic and indeed I found
  
 <​code>​ <​code>​
Line 19: Line 19:
 0! = + 0^0 0! = + 0^0
 1! = - 0^1 + 1*1^1, 1! = - 0^1 + 1*1^1,
-2! = + 0^2 - 2*1^2 + 2^2, +2! = + 0^2 - 2*1^2 +  2^2, 
-3! = - 0^3 + 3*1^3 - 3*2^3 + 3^3, +3! = - 0^3 + 3*1^3 -  3*2^3 +  3^3, 
-4! = + 0^4 - 4*1^4 + 6*2^4 - 4*3^4 + 4^4, +4! = + 0^4 - 4*1^4 +  6*2^4 -  4*3^4 +  4^4, 
-5! = - 0^5 + 5*1^5 - 10*2^5 + 10*3^5 - 5*4^5 + 5^5, +5! = - 0^5 + 5*1^5 - 10*2^5 + 10*3^5 -  5*4^5 +   ​5^5, 
-6! = + 0^6 - 6*1^6 + 15*2^6 - 20*3^6 + 15*4^6 - 6*5^6 + 6^6, +6! = + 0^6 - 6*1^6 + 15*2^6 - 20*3^6 + 15*4^6 - 6*5^6   6^6, 
-7! = - 0^7 + 7*1^7 - 21*2^7 + 35*3^7 - 35*4^7 + 21*5^7 - 7*6^7 + 7^7,+7! = - 0^7 + 7*1^7 - 21*2^7 + 35*3^7 - 35*4^7 + 21*5^7 -  7*6^7 + 7^7,
 8! = + 0^8 - 8*1^8 + 28*2^8 - 56*3^8 + 70*4^8 - 56*5^8 + 28*6^8 - 8*7^8 + 8^8 8! = + 0^8 - 8*1^8 + 28*2^8 - 56*3^8 + 70*4^8 - 56*5^8 + 28*6^8 - 8*7^8 + 8^8
 </​code>​ </​code>​
  
 The binomial coefficients use the factorial of course, so there'​s not real computational benefit. The binomial coefficients use the factorial of course, so there'​s not real computational benefit.
 +
 +The theorem underlying here is that, for all $n$
 +
 +$\sum_{k=0}^n\dfrac{(-1)^k (-k)^n}{k!\,​(n - k)!}=1$ ​
  
 ----- -----
Link to graph
Log In
Improvements of the human condition