This is an old revision of the document!
Finite sum of complex numbers
Set
$ (z_i) \in \mathrm{FinSequence}(\mathbb C)$ |
$ n=\mathrm{length}((z_i)) $ |
$\sum: \mathrm{FinSequence}(\mathbb C)\to \mathbb C$ |
$\sum_{i=1}^n\ z_i:= \begin{cases} 0 & \mathrm{if}\ n=0\\\\ \left(\sum_{i=1}^{n-1}\ z_i\right)\ +\ z_n & \mathrm{else} \end{cases}$ |
Discussion
Theorem
$\sum_{k=1}^n z^k=\frac{z^{n+1}-1}{z-1}$ |
---|