This is an old revision of the document!


Finite sum of complex numbers

Set

$ (z_i) \in \mathrm{FinSequence}(\mathbb C)$
$ n=\mathrm{length}((z_i)) $
$\sum: \mathrm{FinSequence}(\mathbb C)\to \mathbb C$
$\sum_{i=1}^n\ z_i:= \begin{cases} 0 & \mathrm{if}\ n=0\\\\ \left(\sum_{i=1}^{n-1}\ z_i\right)\ +\ z_n & \mathrm{else} \end{cases}$

Discussion

Theorem

$\sum_{k=1}^n z^k=\frac{z^{n+1}-1}{z-1}$

Parents

Subset of

Link to graph
Log In
Improvements of the human condition