Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
grand_canonical_partition_function [2016/03/04 16:47]
nikolaj
grand_canonical_partition_function [2016/03/04 16:49]
nikolaj
Line 22: Line 22:
 Important grand canonical partition functions in QM are those for bosons and fermions denoted $\Xi^+$ and $\Xi^-$, respectively. We only deal with one sort of particle, but introduce the index $r$ which runs over different energy levels. Using the identities Important grand canonical partition functions in QM are those for bosons and fermions denoted $\Xi^+$ and $\Xi^-$, respectively. We only deal with one sort of particle, but introduce the index $r$ which runs over different energy levels. Using the identities
  
-$\sum_{N=0}^{N^\text{max}}\mathrm e^{\beta\sum_r \mu}^N e^{-\beta\sum_r N\varepsilon_r} = $\sum_{N=0}^{N^\text{max}}\mathrm e^{-\beta\sum_r N\ (\varepsilon_r-\mu)} = \prod_r \sum_{N=0}^{N^\text{max}} (e^{-\beta\ (\varepsilon_r-\mu)})^N = \begin{cases} \prod_r \frac{1}{1-e^{-\beta\ (\varepsilon_r-\mu)}} & \mathrm{if}\ N^\text{max}=\infty \\\\ \prod_r(1+e^{-\beta\ (h_r-\mu)}) & \mathrm{if}\ N^\text{max}=1 \end{cases}$ ​+$\sum_{N=0}^{N^\text{max}}({\mathrm e}^{\beta\sum_r \mu})^N {\mathrm ​e}^{-\beta\sum_r N\varepsilon_r}
 + 
 +$= $\sum_{N=0}^{N^\text{max}}\mathrm e^{-\beta\sum_r N\ (\varepsilon_r-\mu)} ​
 + 
 +$= \prod_r \sum_{N=0}^{N^\text{max}} (e^{-\beta\ (\varepsilon_r-\mu)})^N ​
 + 
 +$= \begin{cases} \prod_r \frac{1}{1-e^{-\beta\ (\varepsilon_r-\mu)}} & \mathrm{if}\ N^\text{max}=\infty \\\\ \prod_r(1+e^{-\beta\ (h_r-\mu)}) & \mathrm{if}\ N^\text{max}=1 \end{cases}$ ​
  
 where $\varepsilon_r$ are the energy eigenvalues we obtain where $\varepsilon_r$ are the energy eigenvalues we obtain
Link to graph
Log In
Improvements of the human condition