Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
grothendieck_universe [2014/12/07 22:33]
nikolaj
grothendieck_universe [2014/12/10 11:14]
nikolaj
Line 5: Line 5:
 | @#FFFDDD: forall ​     | @#FFFDDD: $X\in{\mathfrak G}$ | | @#FFFDDD: forall ​     | @#FFFDDD: $X\in{\mathfrak G}$ |
 | @#55EE55: postulate ​  | @#55EE55: $\mathcal{P}(X) \subseteq{\mathfrak G}$ | | @#55EE55: postulate ​  | @#55EE55: $\mathcal{P}(X) \subseteq{\mathfrak G}$ |
 +| @#FFFDDD: forall ​     | @#FFFDDD: $x\in X$ |
 +| @#55EE55: postulate ​  | @#55EE55: $x\in{\mathfrak G}$ |
 | @#FFFDDD: exists ​     | @#FFFDDD: $P\in{\mathfrak G}$ | | @#FFFDDD: exists ​     | @#FFFDDD: $P\in{\mathfrak G}$ |
 | @#55EE55: postulate ​  | @#55EE55: $\mathcal{P}(X) \subseteq P$ | | @#55EE55: postulate ​  | @#55EE55: $\mathcal{P}(X) \subseteq P$ |
Line 14: Line 16:
 The symbol ${\approx}$ in the last postulate is an abbreviation. For subsets $Y$ of ${\mathfrak G}$, equinumerosity can be defined as the existence of a set of pairs, $f=\{\{y,​u\},​\{y',​u'​\},​\dots\}$,​ which puts elements $y\in Y$ uniquely in correspondence with $u\in{\mathfrak G}$: The symbol ${\approx}$ in the last postulate is an abbreviation. For subsets $Y$ of ${\mathfrak G}$, equinumerosity can be defined as the existence of a set of pairs, $f=\{\{y,​u\},​\{y',​u'​\},​\dots\}$,​ which puts elements $y\in Y$ uniquely in correspondence with $u\in{\mathfrak G}$:
  
->I reverse-engineered this from the metamath page, so it needs to be checked.+>I reverse-engineered this from the metamath page, so it needs to be checked
  
 $Y\ {\approx}\ {\mathfrak G}\equiv\exists f. \forall x.\left((x \in Y) \implies \exists!u.\ \{x, u\} \in f\right) \land \left((x \in {\mathfrak G}\setminus Y) \implies \exists(y \in Y).\ \{y,x\} \in f\right)$ $Y\ {\approx}\ {\mathfrak G}\equiv\exists f. \forall x.\left((x \in Y) \implies \exists!u.\ \{x, u\} \in f\right) \land \left((x \in {\mathfrak G}\setminus Y) \implies \exists(y \in Y).\ \{y,x\} \in f\right)$
  
 The first clause says $f$ corresponds to a function $F$ and moreover implies $F(b) \in Y \implies F(F(b))=b$. The second says $F$ is surjective into ${\mathfrak G}\setminus Y$. The first clause says $f$ corresponds to a function $F$ and moreover implies $F(b) \in Y \implies F(F(b))=b$. The second says $F$ is surjective into ${\mathfrak G}\setminus Y$.
 +
 +>​strangely,​ to me, the metamath defintion doesn'​t include transitivity in an obvious way, and I can't see it... I added it here anyway, since it's part of any other definition I've seen.
  
 === Reference === === Reference ===
Line 29: Line 33:
 [[http://​us.metamath.org/​mpeuni/​grothprim.html|grothprim]] (long), [[http://​us.metamath.org/​mpeuni/​grothprim.html|grothprim]] (long),
 [[http://​us.metamath.org/​mpeuni/​axgroth5.html|axgroth5]] (the one above) [[http://​us.metamath.org/​mpeuni/​axgroth5.html|axgroth5]] (the one above)
 +
 +nLab: 
 +[[http://​ncatlab.org/​nlab/​show/​Grothendieck+universe|Grothendieck universe]]
 ==== Parents ==== ==== Parents ====
 === Requirements === === Requirements ===
 [[Bijective function]], [[Power set]] [[Bijective function]], [[Power set]]
Link to graph
Log In
Improvements of the human condition