Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
group [2014/04/07 16:43]
nikolaj
group [2015/02/02 19:02]
nikolaj
Line 3: Line 3:
 | @#55CCEE: context ​    | @#55CCEE: $G$ | | @#55CCEE: context ​    | @#55CCEE: $G$ |
 | @#FFBB00: definiendum | @#FFBB00: $ \langle G,* \rangle \in \mathrm{it}$ | | @#FFBB00: definiendum | @#FFBB00: $ \langle G,* \rangle \in \mathrm{it}$ |
-| @#AAFFAA: inclusion ​    ​| @#AAFFAA: $\langle G,* \rangle \in \mathrm{monoid}(G)$ | +| @#AAFFAA: inclusion ​  ​| @#AAFFAA: $\langle G,* \rangle \in \mathrm{monoid}(G)$ | 
-| @#AADDEE: let     ​| @#AADDEE: $e$ s.t. $\forall g.\, e*a=a*e=a$ ​ |+| @#AADDEE: let         ​| @#AADDEE: $e$  | 
 +| @#AADDEE: such that   | @#​AADDEE: ​$\forall g.\, e*a=a*e=a$ ​ |
 | @#DDDDDD: range       | @#DDDDDD: $g,​g^{-1}\in G$ | | @#DDDDDD: range       | @#DDDDDD: $g,​g^{-1}\in G$ |
 | @#55EE55: postulate ​  | @#55EE55: $\forall g.\,\exists g^{-1}.\;​(g*g^{-1}=g^{-1}*g=e)$ | | @#55EE55: postulate ​  | @#55EE55: $\forall g.\,\exists g^{-1}.\;​(g*g^{-1}=g^{-1}*g=e)$ |
  
-==== Discussion ==== +----- 
-=== Alternative ​definition ​===+=== Alternative ​definitions ​===
 Let $\langle G,* \rangle $ be a set $G$ with a binary operation. I'll rewrite the group axioms explicitly in the first order language: Let $\langle G,* \rangle $ be a set $G$ with a binary operation. I'll rewrite the group axioms explicitly in the first order language:
  
Line 24: Line 25:
 For given $G$, the set $\text{group}(G)$ is the set of all pairs $\langle G,* \rangle$, containing $G$ itself, as well a binary operation which fulfills the group axioms. One generally calls $G$ the group, i.e. the set with respect to which the operation "​$*$"​ is defined. ​ For given $G$, the set $\text{group}(G)$ is the set of all pairs $\langle G,* \rangle$, containing $G$ itself, as well a binary operation which fulfills the group axioms. One generally calls $G$ the group, i.e. the set with respect to which the operation "​$*$"​ is defined. ​
  
-==== Parents ====+-----
 === Subset of === === Subset of ===
 [[Monoid]], [[Loop]] [[Monoid]], [[Loop]]
Link to graph
Log In
Improvements of the human condition