Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
holomorphic_function [2015/01/29 13:05]
nikolaj
holomorphic_function [2016/03/18 19:20]
nikolaj
Line 18: Line 18:
 $f:\mathcal O\to \mathbb C$ ... holomorphic on $\mathcal{O}\ \equiv\ \forall(z_0\in\mathcal O).\ \exists (f':​\mathcal O\to \mathbb C).\ J_{z_0}^f(d)=f'​(z_0)\cdot(d^1+i d^2) $ $f:\mathcal O\to \mathbb C$ ... holomorphic on $\mathcal{O}\ \equiv\ \forall(z_0\in\mathcal O).\ \exists (f':​\mathcal O\to \mathbb C).\ J_{z_0}^f(d)=f'​(z_0)\cdot(d^1+i d^2) $
  
-This viewpoints ​makes leads us directly to a very important property of holomorphic functions. Comparing the first components tells us that +This viewpoints leads us directly to a very important property of holomorphic functions. Comparing the first components tells us that 
  
 $j_1=\frac{\partial u}{\partial x},​\hspace{.5cm} j_2=-\frac{\partial u}{\partial y}$  $j_1=\frac{\partial u}{\partial x},​\hspace{.5cm} j_2=-\frac{\partial u}{\partial y}$ 
Line 26: Line 26:
 ==Cauchy–Riemann equations== ==Cauchy–Riemann equations==
  
-^ $\frac{ \partial u }{ \partial x } = \frac{ \partial v }{ \partial y }$ ^ +^ $\dfrac{ \partial u }{ \partial x } = \dfrac{ \partial v }{ \partial y }$ ^ 
-^ $\frac{ \partial u }{ \partial y } = -\frac{ \partial v }{ \partial x }$ ^+^ $\dfrac{ \partial u }{ \partial y } = -\dfrac{ \partial v }{ \partial x }$ ^
  
 Hence Hence
  
-^ $f$ ... holomorphic $\implies f'(x+i y)=\frac{\partial ​u}{\partial x}-i \frac{\partial ​u}{\partial y}$ ^+^ $f$ ... holomorphic $\implies f'(x+i y)=\left(\dfrac{\partial}{\partial x}-i \dfrac{\partial}{\partial y}\right)u$ ^
  
 So for a holomorphic function $f$, the total change (a complex value) is determined by the real part (or alternatively complex part) of $f$ alone. So for a holomorphic function $f$, the total change (a complex value) is determined by the real part (or alternatively complex part) of $f$ alone.
  
-== non-example ==+== Non-example ==
 The [[ε-δ function limit|limit definition]] for a function requires that variation of function values stops being large once you get sufficiently close to the fixed point $0$. The [[ε-δ function limit|limit definition]] for a function requires that variation of function values stops being large once you get sufficiently close to the fixed point $0$.
  
 For functions like the complex conjugation,​ $f(z):​=\overline{z}$,​ the finite difference For functions like the complex conjugation,​ $f(z):​=\overline{z}$,​ the finite difference
  
-$\dfrac{f(z)-f(0)}{z-0}=\dfrac{\overline{z}}{z}={\mathrm e}^{-2i\mathrm{arg}(z)}$+$\dfrac{f(z)-f(0)}{z-0}=\dfrac{\overline{z}}{z}={\mathrm e}^{-2i\,\mathrm{arg}(z)}$
  
 varies strongly with the $z$'s argument, even if $z$ is varied in only an arbitrarily small area around $0$, and so there is no limit. The function $f$ doesn'​t have a derivative. varies strongly with the $z$'s argument, even if $z$ is varied in only an arbitrarily small area around $0$, and so there is no limit. The function $f$ doesn'​t have a derivative.
Link to graph
Log In
Improvements of the human condition