Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
infinite_product_of_complex_numbers [2015/04/15 17:09]
nikolaj
infinite_product_of_complex_numbers [2016/04/02 11:40]
nikolaj
Line 6: Line 6:
 ----- -----
 === Discussion === === Discussion ===
->todo: Interestingly,​ I think I see the nLab doesn'​t want to allow e.g. $\prod_{n=1}^\infty (17-n)$ to be zero. +>todo: Interestingly,​ I think I see the nLab doesn'​t want to allow e.g. $\prod_{n=1}^\infty (17-n)$ to be zero. (Reference below)
- +
-http://​ncatlab.org/​nlab/​show/​infinite+product+
  
 I recon infinite products may arise when x is written as $111\cdots11x$ and 1 is represented as something. ​ I recon infinite products may arise when x is written as $111\cdots11x$ and 1 is represented as something. ​
Line 30: Line 28:
 Also, from the sum formula with $a_n=\prod_{k=K}^{n-1}b_k$,​ we get Also, from the sum formula with $a_n=\prod_{k=K}^{n-1}b_k$,​ we get
  
-$\prod_{k=K}^\infty b_k=\lim_{n\to\infty}a_n=\prod_{k=K}^{M-1}b_k+\sum_{n=M}^\infty(b_n-1)\,​\prod_{k=K}^{n-1}b_k$ ^+$\prod_{k=K}^\infty b_k=\lim_{n\to\infty}a_n=\prod_{k=K}^{M-1}b_k+\sum_{n=M}^\infty(b_n-1)\,​\prod_{k=K}^{n-1}b_k$ 
 + 
 +^ $\prod_{k=0}^\infty b_k = \prod_{k=0}^{M-1}b_k + \sum_{n=M}^\infty(b_n-1)\,​\prod_{k=0}^{n-1}b_k$ ^
  
 <​code>​ <​code>​
 b[n_] = 1 + 1/n!; b[n_] = 1 + 1/n!;
 +
 +Ks = 0;
 +Ke = 100;
 +Mid = 4;
 +
 +Product[b[k],​ {k, Ks, Ke}]
 +
 Ks = 0; Ks = 0;
 Ke = 100; Ke = 100;
 Mid = 4; Mid = 4;
  
-Product[b[k],​ {k, Ks, Ke}] // N 
 Product[b[k],​ {k, Ks, Mid - 1}] +  Product[b[k],​ {k, Ks, Mid - 1}] + 
-  Sum[(b[k] - 1) Product[b[k2],​ {k2, Ks, k - 1}], {k, Mid, Ke}] // N+  Sum[(b[k] - 1) Product[b[k2],​ {k2, Ks, k - 1}], {k, Mid, Ke}]
 </​code>​ </​code>​
  
Line 52: Line 58:
  
 >​I'​ve seen this pop up in the derivation of the basic path integral. Where else does it pop up? Why, if $x_n$ doesn'​t depend on $N$, does this turn to an $\exp(\int something)$?​ I think they join some limits to a single one. I think that relates to what Ron said about quantization procedures. >​I'​ve seen this pop up in the derivation of the basic path integral. Where else does it pop up? Why, if $x_n$ doesn'​t depend on $N$, does this turn to an $\exp(\int something)$?​ I think they join some limits to a single one. I think that relates to what Ron said about quantization procedures.
 +
 +<​code>​
 +h = (b - a)/m;
 +f[X_] = c X^2;
 +
 +p = Product[
 +   1 + f[i] h
 +   , {i, a, b, h}] // simple
 +
 +a = 0;
 +b = 7;
 +c = 3;
 +Limit[p, m -> \[Infinity]]
 +
 +Exp[Integrate[c X^2, {X, 0, 7}]]
 +</​code>​
  
 == Jacobi triple product == == Jacobi triple product ==
Line 61: Line 83:
  
 $\prod_{n=0}^{\infty}\left(1 + x^{2^n}\right) = \frac{1}{1-x}$ $\prod_{n=0}^{\infty}\left(1 + x^{2^n}\right) = \frac{1}{1-x}$
 +
 +=== Reference ===
 +nLab: [[http://​ncatlab.org/​nlab/​show/​infinite+product|Infinite product]]
 +
 +Wikipedia: [[http://​en.wikipedia.org/​wiki/​Product_integral|Product integral]]
  
 ----- -----
 === Subset of === === Subset of ===
 [[Infinite series]] [[Infinite series]]
Link to graph
Log In
Improvements of the human condition