Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
infinite_product_of_complex_numbers [2015/04/15 17:09]
nikolaj
infinite_product_of_complex_numbers [2016/04/02 14:53]
nikolaj
Line 6: Line 6:
 ----- -----
 === Discussion === === Discussion ===
->todo: Interestingly,​ I think I see the nLab doesn'​t want to allow e.g. $\prod_{n=1}^\infty (17-n)$ to be zero. +>todo: Interestingly,​ I think I see the nLab doesn'​t want to allow e.g. $\prod_{n=1}^\infty (17-n)$ to be zero. (Reference below)
- +
-http://​ncatlab.org/​nlab/​show/​infinite+product+
  
 I recon infinite products may arise when x is written as $111\cdots11x$ and 1 is represented as something. ​ I recon infinite products may arise when x is written as $111\cdots11x$ and 1 is represented as something. ​
Line 16: Line 14:
 >can Euler products arise in this way? >can Euler products arise in this way?
  
-And they may arise as determinants infinite dimensional operators, i.e. products of eigenvalues.+And they may arise ans determinants ​of infinite dimensional operators, i.e. products of eigenvalues.
  
 === Theorems === === Theorems ===
Line 30: Line 28:
 Also, from the sum formula with $a_n=\prod_{k=K}^{n-1}b_k$,​ we get Also, from the sum formula with $a_n=\prod_{k=K}^{n-1}b_k$,​ we get
  
-$\prod_{k=K}^\infty b_k=\lim_{n\to\infty}a_n=\prod_{k=K}^{M-1}b_k+\sum_{n=M}^\infty(b_n-1)\,​\prod_{k=K}^{n-1}b_k$ ^+$\prod_{k=K}^\infty b_k=\lim_{n\to\infty}a_n=\prod_{k=K}^{M-1}b_k+\sum_{n=M}^\infty(b_n-1)\,​\prod_{k=K}^{n-1}b_k$ 
 + 
 +^ $\prod_{k=0}^\infty b_k = \prod_{k=0}^{M-1}b_k + \sum_{n=M}^\infty(b_n-1)\,​\prod_{k=0}^{n-1}b_k$ ^
  
 <​code>​ <​code>​
 b[n_] = 1 + 1/n!; b[n_] = 1 + 1/n!;
 +
 +Ks = 0;
 +Ke = 100;
 +Mid = 4;
 +
 +Product[b[k],​ {k, Ks, Ke}]
 +
 Ks = 0; Ks = 0;
 Ke = 100; Ke = 100;
 Mid = 4; Mid = 4;
  
-Product[b[k],​ {k, Ks, Ke}] // N 
 Product[b[k],​ {k, Ks, Mid - 1}] +  Product[b[k],​ {k, Ks, Mid - 1}] + 
-  Sum[(b[k] - 1) Product[b[k2],​ {k2, Ks, k - 1}], {k, Mid, Ke}] // N+  Sum[(b[k] - 1) Product[b[k2],​ {k2, Ks, k - 1}], {k, Mid, Ke}]
 </​code>​ </​code>​
  
Line 52: Line 58:
  
 >​I'​ve seen this pop up in the derivation of the basic path integral. Where else does it pop up? Why, if $x_n$ doesn'​t depend on $N$, does this turn to an $\exp(\int something)$?​ I think they join some limits to a single one. I think that relates to what Ron said about quantization procedures. >​I'​ve seen this pop up in the derivation of the basic path integral. Where else does it pop up? Why, if $x_n$ doesn'​t depend on $N$, does this turn to an $\exp(\int something)$?​ I think they join some limits to a single one. I think that relates to what Ron said about quantization procedures.
 +
 +<​code>​
 +h = (b - a)/m;
 +f[X_] = c X^2;
 +
 +p = Product[
 +   1 + f[i] h
 +   , {i, a, b, h}] // simple
 +
 +a = 0;
 +b = 7;
 +c = 3;
 +Limit[p, m -> \[Infinity]]
 +
 +Exp[Integrate[c X^2, {X, 0, 7}]]
 +</​code>​
  
 == Jacobi triple product == == Jacobi triple product ==
Line 61: Line 83:
  
 $\prod_{n=0}^{\infty}\left(1 + x^{2^n}\right) = \frac{1}{1-x}$ $\prod_{n=0}^{\infty}\left(1 + x^{2^n}\right) = \frac{1}{1-x}$
 +
 +=== Reference ===
 +nLab: [[http://​ncatlab.org/​nlab/​show/​infinite+product|Infinite product]]
 +
 +Wikipedia: [[http://​en.wikipedia.org/​wiki/​Product_integral|Product integral]]
  
 ----- -----
 === Subset of === === Subset of ===
 [[Infinite series]] [[Infinite series]]
Link to graph
Log In
Improvements of the human condition