Differences

This shows you the differences between two versions of the page.

Link to this comparison view

integer [2013/09/03 00:40]
nikolaj
integer [2014/03/21 11:11]
Line 1: Line 1:
-===== Integer ===== 
-==== Definition ==== 
-| @#FFBB00: $ \mathbb Z \equiv \mathbb N\times\mathbb N\ /\ \{\langle \langle a,​b\rangle,​\langle m,​n\rangle\rangle\ |\ a+n = b+m )\} $ | 
  
-with $a,b,n,m\in \mathbb N$. 
- 
-==== Discussion ==== 
-For $a \ge b$, we denote $\langle a,b\rangle$ by $a-b$. The structure of the non-negative integers is then that of the natural numbers. 
- 
-For $a < b$, we have $(b-a)>​0$ and we denote $\langle a,b\rangle$ by $-(b-a)$. 
- 
-So if $[\langle a,​b\rangle]$ is the equivalence class of $\langle a,b\rangle$ with respect to the equivalence relation $\{\langle \langle a,​b\rangle,​\langle m,​n\rangle\rangle\ |\ a+n = b+m )\}$, we have 
- 
-  * $ 0 \equiv [\langle0,​0\rangle] = [\langle1,​1\rangle] = \dots = [\langle k,k\rangle] $ 
- 
-  * $ 1 \equiv [\langle1,​0\rangle] = [\langle2,​1\rangle] = \dots = [\langle k+1,​k\rangle] $ 
- 
-  * $ -1 \equiv [\langle0,​1\rangle] = [\langle1,​2\rangle] = \dots = [\langle k,​k+1\rangle] $ 
- 
-  * $ 2 \equiv [\langle2,​0\rangle] = [\langle3,​1\rangle] = \dots = [\langle k+2,​k\rangle] $ 
- 
-  * $ -2 \equiv [\langle0,​2\rangle] = [\langle1,​3\rangle] = \dots = [\langle k,​k+2\rangle] $ 
- 
-  * $ 3 \equiv [\langle0,​3\rangle] = \dots $ 
- 
-where $k$ is any natural number. 
- 
-=== Theorems === 
-The integer $-[\langle a,​b\rangle]$ is the additive inverse of $[\langle a,​b\rangle]$ and can be computed as 
- 
-$-[\langle a,​b\rangle]=[\langle b,​a\rangle]$ 
-  
-=== Reference === 
-Wikipedia: [[http://​en.wikipedia.org/​wiki/​Integer|Integer]] 
-==== Context ==== 
-=== Subset of === 
-[[Quotient set]] 
-=== Refinement of === 
-[[Rational number]] 
-=== Requirements === 
-[[Arithmetic structure of natural numbers]] 
Link to graph
Log In
Improvements of the human condition