Differences

This shows you the differences between two versions of the page.

Link to this comparison view

integral_over_a_subset [2014/02/25 20:51]
nikolaj
integral_over_a_subset [2014/03/21 11:11]
Line 1: Line 1:
-===== Integral over a subset ===== 
-==== Set ==== 
-| @#88DDEE: $\mathbb K = \overline{\mathbb R}\lor \mathbb C$ | 
-| @#88DDEE: $\langle X,​\Sigma,​\mu_X\rangle$ ... measure space | 
  
-| @#FFBB00: $\int_S: \mathcal P(X)\to(X\to \mathbb K)\to \mathbb K$ | 
- 
-| @#DDDDDD: $f: X\to \mathbb K$ | 
- 
-| @#FFBB00: $\int_S\ f\ \mathrm d\mu_X:​=\int_X\ f\cdot \chi_S\ \mathrm d\mu_X$ | 
- 
-==== Discussion ==== 
-If $X=\mathbb R$, $a,b\in \mathbb R$, $a<b$ and the measure $\mu_X$ is such that single points have zero measure $\mu_X(\{a\})=\mu_X(\{b\})=0$ (like the standard [[Lebesgue measure]]), then we write 
- 
-^ $\int_a^b\ f\ \mathrm d\mu_X\equiv\int_{[a,​b]}\ f\ \mathrm d\mu_X$ ^ 
- 
-The zero measure of $a,b$ guaranties that we replace integrals over $[a,b)$, $(a,b]$ and $(a,b)$ by this one. 
- 
-If $c,d\in \mathbb R$ are numbers with $c<d$, then if we write integral symbol $\int_d^c$ (notice the switched positions of $c$ and $d$ w.r.t. their ordering) we mean the negative of the integral over $[c,d]$ 
- 
-^ $\int_d^c\ f\ \mathrm d\mu_X\equiv -\int_c^d\ f\ \mathrm d\mu_X$ ^ 
- 
-==== Parents ==== 
-=== Context === 
-[[Pointwise function product]], [[Characteristic function]] 
-=== Refinement of === 
-[[Function integral]] 
Link to graph
Log In
Improvements of the human condition