Differences

This shows you the differences between two versions of the page.

Link to this comparison view

k-partite_graph [2014/02/11 00:53]
nikolaj
k-partite_graph [2014/03/21 11:11]
Line 1: Line 1:
-===== k-partite graph ===== 
-==== Set ==== 
-| @#88DDEE: $k\in\mathrm N$ | 
-| @#88DDEE: $V$ ... set | 
  
-| @#FFBB00: $\langle V,E\rangle \in \mathrm{it}(E,​V) $ | 
- 
-| @#AAFFAA: $ \langle V,E\rangle $ ... undirected graph | 
- 
-| @#DDDDDD: $ i,​j\in\{1,​\dots,​k\} $ | 
-| @#DDDDDD: $ X_1,​\dots,​X_k\subset V $ | 
-| @#DDDDDD: $ \bigcup_i X_i=V $ | 
-| @#DDDDDD: $ \forall i,j.\ X_i\cap X_j=\emptyset $ | 
-| @#DDDDDD: $ v,w\in V $ | 
- 
-| @#55EE55: $\exists X_1,​\dots,​X_k.\ \forall u,v.\ \{u,v\}\in E\implies \forall i.\ \neg(v\in X_i\land w\in X_i) $ | 
- 
-==== Discussion ==== 
-The $X_i$ are the partitions of the graph and the condition says that there can be no edge within an $X_i$, i.e. there are only connection from one partition to another. One can also few the partitions as different coloring of their vertices. 
-=== Theorems === 
-From any $v\in X_i$, there can be edges to only the other partitions, i.e. to at most $|V|-|X_i|$ different other vertices. If we sum up the edges for all partitions and divide the double-counting out, we find that for an $k$-partite graph 
- 
-$|E|\le \frac{1}{2}\sum_{i=1}^k |X_i|\cdot (|V|-|X_i|)$ 
-==== Parents ==== 
-=== Subset of === 
-[[Undirected graph]] 
Link to graph
Log In
Improvements of the human condition