Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
laplace_transform [2016/03/08 16:16]
nikolaj
laplace_transform [2016/03/08 16:17]
nikolaj
Line 27: Line 27:
 $L[f](\beta) = \sum_{n=0}^\infty f^{(n)}(0) \frac{1}{\beta^{n+1}}=\dfrac{1}{\beta}\sum_{n=0}^\infty f^{(n)}(0) \left(\frac{1}{\beta}\right)^n$ $L[f](\beta) = \sum_{n=0}^\infty f^{(n)}(0) \frac{1}{\beta^{n+1}}=\dfrac{1}{\beta}\sum_{n=0}^\infty f^{(n)}(0) \left(\frac{1}{\beta}\right)^n$
  
-or+or, in Terms of $T:​=\frac{1}{\beta}$
  
-$L[f](\frac{1}{\beta}) = \beta\sum_{n=0}^\infty f^{(n)}(0) ​\beta^n$+$L[f](T) = \beta\sum_{n=0}^\infty f^{(n)}(0) ​T^n$
  
 Note how this means $f(E)=1$ is connected to $\dfrac{1}{\beta}$ and $f(E)=\exp(E)$ is connected to $\dfrac{1}{\beta}\dfrac{1}{1-\frac{1}{\beta}}=-\dfrac{1}{1-\beta}$. Note how this means $f(E)=1$ is connected to $\dfrac{1}{\beta}$ and $f(E)=\exp(E)$ is connected to $\dfrac{1}{\beta}\dfrac{1}{1-\frac{1}{\beta}}=-\dfrac{1}{1-\beta}$.
Link to graph
Log In
Improvements of the human condition