Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
laplace_transform [2016/03/08 16:16]
nikolaj
laplace_transform [2016/03/08 16:19]
nikolaj
Line 27: Line 27:
 $L[f](\beta) = \sum_{n=0}^\infty f^{(n)}(0) \frac{1}{\beta^{n+1}}=\dfrac{1}{\beta}\sum_{n=0}^\infty f^{(n)}(0) \left(\frac{1}{\beta}\right)^n$ $L[f](\beta) = \sum_{n=0}^\infty f^{(n)}(0) \frac{1}{\beta^{n+1}}=\dfrac{1}{\beta}\sum_{n=0}^\infty f^{(n)}(0) \left(\frac{1}{\beta}\right)^n$
  
-or+or, in Terms of $T:​=\frac{1}{\beta}$
  
-$L[f](\frac{1}{\beta}) = \beta\sum_{n=0}^\infty f^{(n)}(0) \beta^n$+$L[f](T) = T\sum_{n=0}^\infty f^{(n)}(0)\, T^n$
  
-Note how this means $f(E)=1$ is connected to $\dfrac{1}{\beta}$ and $f(E)=\exp(E)$ is connected to $\dfrac{1}{\beta}\dfrac{1}{1-\frac{1}{\beta}}=-\dfrac{1}{1-\beta}$.+Note how this means $f(E)=1$ is connected to $\dfrac{1}{\beta}=T$ and $f(E)=\exp(E)$ is connected to $-\dfrac{1}{1-\beta}=\dfrac{1}{\beta}\dfrac{1}{1-\frac{1}{\beta}}=T\dfrac{1}{1-T}$.
  
 ----- -----
Link to graph
Log In
Improvements of the human condition