Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
left_module [2013/08/07 14:19]
nikolaj
left_module [2014/03/21 11:11] (current)
Line 1: Line 1:
 ===== Left module ===== ===== Left module =====
-==== Definition ​==== +==== Set ==== 
-| @#88DDEE: $M,R$ |+| @#55CCEE: context ​    | @#55CCEE: $M,R$ |
  
-| @#55EE55: $\langle\mathcal M,\mathcal R, *\rangle \in \mathrm{leftModule}(M,​R)$ |+| @#FFBB00: definiendum | @#FFBB00: $\langle\mathcal M,\mathcal R, *\rangle \in \mathrm{leftModule}(M,​R)$ |
  
-| @#88DDEE: $\mathcal M\in \mathrm{abelianGroup}(M)$ | +| @#55CCEE: context ​    | @#55CCEE: $\mathcal M\in \mathrm{abelianGroup}(M)$ | 
-| @#88DDEE: $\mathcal R\in \mathrm{ring}(R)$ | +| @#55CCEE: context ​    | @#55CCEE: $\mathcal R\in \mathrm{ring}(R)$ | 
-| @#88DDEE: $*:R\times M\to M$ |+| @#55CCEE: context ​    | @#55CCEE: $*:R\times M\to M$ |
  
 Now denote the addition in th group $\mathcal M$ by "​$+$"​ as usual, and the addition and multiplication in the ring $\mathcal R$ by "​$\hat+$"​ and "​$\hat*$",​ respectively. Now denote the addition in th group $\mathcal M$ by "​$+$"​ as usual, and the addition and multiplication in the ring $\mathcal R$ by "​$\hat+$"​ and "​$\hat*$",​ respectively.
Line 14: Line 14:
 | $r,s\in R$ | | $r,s\in R$ |
  
-| @#55EE55: $r*(x+y) = (r*x)+(r*y)$ | +| @#55EE55: postulate ​  | @#55EE55: $r*(x+y) = (r*x)+(r*y)$ | 
-| @#55EE55: $(r\ \hat+\ s)* x = (r* x)+(s* x)$ | +| @#55EE55: postulate ​  | @#55EE55: $(r\ \hat+\ s)* x = (r* x)+(s* x)$ | 
-| @#55EE55: $(r\ \hat*\ s)* x = r* (s* x)$ |+| @#55EE55: postulate ​  | @#55EE55: $(r\ \hat*\ s)* x = r* (s* x)$ |
  
-==== Ramifications ​==== +==== Discussion ​====
-=== Discussion ​===+
 "​$*$"​ is an action of the ring on the group from the left. If the ring is commutative,​ then one need not distinguish between left- and right module. "​$*$"​ is an action of the ring on the group from the left. If the ring is commutative,​ then one need not distinguish between left- and right module.
  
 One generally speaks of an $R$-left-module over $M$. Here $R$ and $M$ are just sets. One generally speaks of an $R$-left-module over $M$. Here $R$ and $M$ are just sets.
-==== Reference ​====+=== Reference ===
 Wikipedia: [[http://​en.wikipedia.org/​wiki/​Module_%28mathematics%29|Module]] Wikipedia: [[http://​en.wikipedia.org/​wiki/​Module_%28mathematics%29|Module]]
-==== Context ​==== +==== Parents ​==== 
-=== Parents ​===+=== Context ​===
 [[Ring]] [[Ring]]
Link to graph
Log In
Improvements of the human condition