Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
limit_in_a_metric_space [2015/11/26 22:28]
nikolaj
limit_in_a_metric_space [2017/02/02 21:25]
nikolaj
Line 15: Line 15:
 ----- -----
 === Examples === === Examples ===
-$\sum_{k=1}^\infty ​a_n = y$+$\sum_{k=1}^\infty ​a_k = y$
  
 means means
  
-$ \forall (\varepsilon\in{\mathbb R}_{>​0}).\,​\exists (m\in{\mathbb N}).\,​\forall (n\ge_{\mathbb N} m).\,| \sum_{k=1}^n ​a_n - y \, |<​\varepsilon $+$ \forall (\varepsilon\in{\mathbb R}_{>​0}).\,​\exists (m\in{\mathbb N}).\,​\forall (n\ge_{\mathbb N} m).\,| \sum_{k=1}^n ​a_k - y \, |<​\varepsilon $
  
 == Infinite sum == == Infinite sum ==
Line 57: Line 57:
  
 $\int_a^\infty f(x)\,​{\mathrm d}x := \lim_{b\to \infty} \int_a^b f(x)\,​{\mathrm d}x$ $\int_a^\infty f(x)\,​{\mathrm d}x := \lim_{b\to \infty} \int_a^b f(x)\,​{\mathrm d}x$
 +
 +=== sci ===
 +
 +>>​7944543
 +I take one for the notebook:
 +
 +In calculus/​analysis,​ infinity isn't used as an entity (like a number), but instead ​
 +>limit n to infinity
 +means
 +>for whatever m you choose (arbitry), there is such and such, that such and such
 +
 +For example you may consider a sequence [math] s_n [/math] given by
 +1/2, 1/4, 1/8, 1/16, ...
 +then the "limit of n to infinity"​ is the number y=0.
 +Why? Because for all real numbers [math] \varepsilon [/math] bigger than zero, you can find a natural number m, so that for all numbers n after that, you have that [math] s_n [/math] became smaller than [math] \varepsilon [/math].
 +For example, choose the small number [math] \varepsilon = 0.0003 [/math]. The sequence actualy becomes forever smaller than that after, say, m = 4000. Indeed, for any n after 4000, the number [math] s_n [/math] is something smaller than 1/4000, which is 0.00025.
 +
 +So the limit to infinity is formalized as something to do with 
 +>for arbitrary high values of the index, the thing itself is still restricted.
 +
 +Coming back to the definition:
 +The limit of n to infinity of a seqeunce [math] s_n [/math] is y, if for all real numbers [math] \varepsilon [/math] bigger than zero, you can find a natural number m, so that for all numbers n after that, you have that the difference (here given by the distance on the real number line) between the value [math] s_n [/math] and this y became smaller than [math] \varepsilon [/math].
 +
 +In formulas
 +
 +[math] \lim_{n \to \infty} s_n = y[/​math] ​
 +
 +iff
 +
 +[math] \forall ( \varepsilon \in {\mathbb R}_{>0} ) . \, \exists ( m \in {\mathbb N} ) . \, \forall ( n \ge_{\mathbb N} m) . \, | s_n - y \, |<​\varepsilon [/math]
 +
 +Another example: Consider again the sequence [math] s_n [/math] given by
 +1/2, 1/4, 1/8, 1/16, ...
 +and create a new sequence
 +
 +[math] S_m = \sum_{k=1}^n a_n [/math]
 +
 +which has members
 +1/2, 1/2+1/4, 1/​2+1/​4+1/​8,​ ...
 +
 +You can prove that with y=1 the above formula regarding [math] \forall ( \varepsilon \in {\mathbb R}_{>0} )  [/math] holds.
 +
 +So we say 
 +
 +[math] \sum_{k=0}^\infty s_n := \lim_{n \to \infty} \sum_{k=0}^n s_k = 1 [/math]
  
 === Reference === === Reference ===
Link to graph
Log In
Improvements of the human condition