This is an old revision of the document!


Limit in a metric space

Set

todo: clean up this definition
context $\langle X,d\rangle$ … metric space
context $x$ … infinite seqeunce in $ X $
definiendum $\mathrm{lim}_{n\to\infty}\ x_n$
range $\varepsilon\in\mathbb R$
range $ \varepsilon>0 $
range $m\in\mathbb N$
range $m\ge 0 $
range $y\equiv\mathrm{lim}_{n\to\infty}\ x_n$
postulate $ \forall\varepsilon.\,\exists m.\,\forall (n\ge m).\,d(x_n,y)<\varepsilon $

Examples

$\sum_{k=1}^\infty a_n = y$

means

$ \forall (\varepsilon\in{\mathbb R}_{>0}).\,\exists (m\in{\mathbb N}).\,\forall (n\ge_{\mathbb N} m).\,| \sum_{k=1}^n a_n - y \, |<\varepsilon $

Infinite sum

$\sum_{n=0}^\text{Classical} f(n):=\lim_{m\to\infty}\sum_{n=0}^m f(n)$

Riemann integral

$h_m=\frac{(b-a)}{m}$

$\int_a^b f(x)\,{\mathrm d}x := \lim_{m\to\infty}\sum_{n=0}^{m-1} f\left(a+h_mx\right)\cdot h_m$

h = (b - a)/m;
int[f_] = Sum[f[a + h*n]*h, {n, 0, m - 1}];

(* Example f(x)=5+7x^2 *)
int[5 + 7 #^2 &] // Expand
Limit[%, m -> Infinity]

With $L_mx:=a+h_mx$, that reads

$\int_a^b f(x)\,{\mathrm d}x := (b-a)\cdot\lim_{m\to\infty} \dfrac{1}{m}\sum_{n=0}^{m-1} f\left(L_mn\right)$

Note that

$\int_a^b f(x)\,{\mathrm d}x = (b-a)\int_0^1 f(L_1(x))\,{\mathrm d}x$

so any limit of the form

$\lim_{m\to\infty} \frac{1}{m} \sum_{n=0}^{m-1} g\left(\frac{n}{m}\right)$

can be rewritten as $\int_0^1 f_g(x)\,{\mathrm d}x$, where $f_g$ is a reverse engineered function from $g$.

Infinite upper bound

$\int_a^\infty f(x)\,{\mathrm d}x := \lim_{b\to \infty} \int_a^b f(x)\,{\mathrm d}x$

Reference

Wikipedia: Limit of a seqence


Context

Link to graph
Log In
Improvements of the human condition