Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
linear_first-order_ode_system [2014/03/06 22:33]
nikolaj
linear_first-order_ode_system [2014/03/06 22:34]
nikolaj
Line 22: Line 22:
 == Two special cases == == Two special cases ==
  
-  ​For constant $A$, one has +  ​For constant $A$, one has 
  
 ^ $S(t,​s)=\mathrm{exp}\left((t-s)\ A\right)$ ^ ^ $S(t,​s)=\mathrm{exp}\left((t-s)\ A\right)$ ^
Line 30: Line 30:
 ^ $y(t)=\mathrm{exp}\left(t A\right)\cdot\left(y_0+\int_0^t\ \mathrm{exp}\left(-s A\right)\ b(s)\ \mathrm ds\right)$ ^ ^ $y(t)=\mathrm{exp}\left(t A\right)\cdot\left(y_0+\int_0^t\ \mathrm{exp}\left(-s A\right)\ b(s)\ \mathrm ds\right)$ ^
  
-  ​The equation $y'​(t)=A(t)y(t)$ is solved by $y(t)=\mathrm{e}^{\int A(t)\,​\mathrm dt}y(0)$. We can in fact sketch how to deal with this equation in cases where $A(t)$ is a more general operator. Dyson series: Say we at least know how to apply $A(t)$. The iterative solution technique for the equation is $y_{n+1}(t)=y(0)+\int_{0}^t A(t)\,​y_n(t)\,​\mathrm dt$. Note that "​$f(x):​=y(0)+\mathrm{int}x $" iterated with initial condition $y(0)$ gives $\left(\sum_{n=0}^\infty\mathrm{int}^n\right)y(0)$. Factors $\frac{1}{n!}$ are introduces when time-ordering the integrand and the resulting series is hence mnemonically written as $y(t)=\mathcal T\exp(int_{t_0}^tA(t))y(0)$+  ​The equation $y'​(t)=A(t)y(t)$ is solved by $y(t)=\mathrm{e}^{\int A(t)\,​\mathrm dt}y(0)$. We can in fact sketch how to deal with this equation in cases where $A(t)$ is a more general operator. Dyson series: Say we at least know how to apply $A(t)$. The iterative solution technique for the equation is $y_{n+1}(t)=y(0)+\int_{0}^t A(t)\,​y_n(t)\,​\mathrm dt$. Note that "​$f(x):​=y(0)+\mathrm{int}x $" iterated with initial condition $y(0)$ gives $\left(\sum_{n=0}^\infty\mathrm{int}^n\right)y(0)$. Factors $\frac{1}{n!}$ are introduces when time-ordering the integrand and the resulting series is hence mnemonically written as $y(t)=\mathcal T\exp(int_{t_0}^tA(t))y(0)$
  
-  ​For $A(t),b(t)$ one-dimensional one has+  ​For $A(t),b(t)$ one-dimensional one has
  
 ^ $S(t,​s)=\mathrm{e}^{I(t)-I(s)}\,​\,​\mathrm{with}\,​\,​ I(s):​=\int_0^s A(\tau)\ \mathrm d\tau$ ^ ^ $S(t,​s)=\mathrm{e}^{I(t)-I(s)}\,​\,​\mathrm{with}\,​\,​ I(s):​=\int_0^s A(\tau)\ \mathrm d\tau$ ^
Link to graph
Log In
Improvements of the human condition