Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
linear_first-order_ode_system [2014/03/06 22:33]
nikolaj
linear_first-order_ode_system [2014/03/07 00:20]
nikolaj
Line 22: Line 22:
 == Two special cases == == Two special cases ==
  
-  ​For constant $A$, one has +  ​For constant $A$, one has 
  
 ^ $S(t,​s)=\mathrm{exp}\left((t-s)\ A\right)$ ^ ^ $S(t,​s)=\mathrm{exp}\left((t-s)\ A\right)$ ^
Line 30: Line 30:
 ^ $y(t)=\mathrm{exp}\left(t A\right)\cdot\left(y_0+\int_0^t\ \mathrm{exp}\left(-s A\right)\ b(s)\ \mathrm ds\right)$ ^ ^ $y(t)=\mathrm{exp}\left(t A\right)\cdot\left(y_0+\int_0^t\ \mathrm{exp}\left(-s A\right)\ b(s)\ \mathrm ds\right)$ ^
  
-  ​The equation $y'​(t)=A(t)y(t)$ is solved by $y(t)=\mathrm{e}^{\int A(t)\,​\mathrm dt}y(0)$. ​We can in fact sketch how to deal with this equation in cases where $A(t)$ is a more general operator. Dyson series: Say we at least know how to apply $A(t)$. The iterative solution technique for the equation is $y_{n+1}(t)=y(0)+\int_{0}^t A(t)\,​y_n(t)\,​\mathrm dt$. Note that "​$f(x):​=y(0)+\mathrm{int}x $" iterated with initial condition $y(0)$ gives $\left(\sum_{n=0}^\infty\mathrm{int}^n\right)y(0)$. Factors $\frac{1}{n!}$ are introduces when time-ordering the integrand and the resulting series is hence mnemonically written as $y(t)=\mathcal T\exp(int_{t_0}^tA(t))y(0)$+  ​The equation $y'​(t)=A(t)y(t)$ is solved by $y(t)=\mathrm{e}^{\int A(t)\,​\mathrm dt}y(0)$. ​
  
-  ​- For $A(t),b(t)$ one-dimensional one has+We can in fact sketch how to deal with this equation in cases where $A(t)$ is a more general operator. Dyson series: Say we at least know how to apply $A(t)$. The iterative solution technique for the equation is $y_{n+1}(t)=y(0)+\int_{0}^t A(t)\,​y_n(t)\,​\mathrm dt$. Note that "​$f(x):​=y(0)+\mathrm{int}x $" iterated with initial condition $y(0)$ gives $\left(\sum_{n=0}^\infty\mathrm{int}^n\right)y(0)$. Factors $\frac{1}{n!}$ are introduces when time-ordering the integrand and the resulting series is hence mnemonically written as $y(t)=\mathcal T\exp(\mathrm{int}_{t_0}^tA(t))y(0)$ 
 + 
 +  * For $A(t),b(t)$ one-dimensional one has
  
 ^ $S(t,​s)=\mathrm{e}^{I(t)-I(s)}\,​\,​\mathrm{with}\,​\,​ I(s):​=\int_0^s A(\tau)\ \mathrm d\tau$ ^ ^ $S(t,​s)=\mathrm{e}^{I(t)-I(s)}\,​\,​\mathrm{with}\,​\,​ I(s):​=\int_0^s A(\tau)\ \mathrm d\tau$ ^
Link to graph
Log In
Improvements of the human condition