Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
linear_first-order_ode_system [2014/03/06 22:34]
nikolaj
linear_first-order_ode_system [2014/03/21 11:11]
127.0.0.1 external edit
Line 1: Line 1:
 ===== Linear first-order ODE system ===== ===== Linear first-order ODE system =====
 ==== Set ==== ==== Set ====
-| @#88DDEE: $ A:\mathbb R\to\mathrm{Matrix}(n,​\mathbb R) $ | +| @#55CCEE: context ​    | @#55CCEE: $ A:\mathbb R\to\mathrm{Matrix}(n,​\mathbb R) $ | 
-| @#88DDEE: $ b:\mathbb R\to\mathbb R^n $ |+| @#55CCEE: context ​    | @#55CCEE: $ b:\mathbb R\to\mathbb R^n $ |
  
-| @#FFBB00: $ y \in \mathrm{it} $ |+| @#FFBB00: definiendum ​| @#FFBB00: $ y \in \mathrm{it} $ |
  
-| @#55EE55: $ y:​C^k(\mathbb R,\mathbb R^n) $  |+| @#55EE55: postulate ​  | @#55EE55: $ y:​C^k(\mathbb R,\mathbb R^n) $  |
  
-| @#55EE55: $ y'​(t)=A(t)\ y(t)+b(t) $ |+| @#55EE55: postulate ​  | @#55EE55: $ y'​(t)=A(t)\ y(t)+b(t) $ |
  
 ==== Discussion ==== ==== Discussion ====
Line 32: Line 32:
   * The equation $y'​(t)=A(t)y(t)$ is solved by $y(t)=\mathrm{e}^{\int A(t)\,​\mathrm dt}y(0)$. ​   * The equation $y'​(t)=A(t)y(t)$ is solved by $y(t)=\mathrm{e}^{\int A(t)\,​\mathrm dt}y(0)$. ​
  
-We can in fact sketch how to deal with this equation in cases where $A(t)$ is a more general operator. Dyson series: Say we at least know how to apply $A(t)$. The iterative solution technique for the equation is $y_{n+1}(t)=y(0)+\int_{0}^t A(t)\,​y_n(t)\,​\mathrm dt$. Note that "​$f(x):​=y(0)+\mathrm{int}x $" iterated with initial condition $y(0)$ gives $\left(\sum_{n=0}^\infty\mathrm{int}^n\right)y(0)$. Factors $\frac{1}{n!}$ are introduces when time-ordering the integrand and the resulting series is hence mnemonically written as $y(t)=\mathcal T\exp(int_{t_0}^tA(t))y(0)$+We can in fact sketch how to deal with this equation in cases where $A(t)$ is a more general operator. Dyson series: Say we at least know how to apply $A(t)$. The iterative solution technique for the equation is $y_{n+1}(t)=y(0)+\int_{0}^t A(t)\,​y_n(t)\,​\mathrm dt$. Note that "​$f(x):​=y(0)+\mathrm{int}x $" iterated with initial condition $y(0)$ gives $\left(\sum_{n=0}^\infty\mathrm{int}^n\right)y(0)$. Factors $\frac{1}{n!}$ are introduces when time-ordering the integrand and the resulting series is hence mnemonically written as $y(t)=\mathcal T\exp(\mathrm{int}_{t_0}^tA(t))y(0)$
  
   * For $A(t),b(t)$ one-dimensional one has   * For $A(t),b(t)$ one-dimensional one has
Link to graph
Log In
Improvements of the human condition