Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
linear_first-order_ode_system [2014/03/21 11:11]
127.0.0.1 external edit
linear_first-order_ode_system [2017/01/17 01:06] (current)
nikolaj
Line 3: Line 3:
 | @#55CCEE: context ​    | @#55CCEE: $ A:\mathbb R\to\mathrm{Matrix}(n,​\mathbb R) $ | | @#55CCEE: context ​    | @#55CCEE: $ A:\mathbb R\to\mathrm{Matrix}(n,​\mathbb R) $ |
 | @#55CCEE: context ​    | @#55CCEE: $ b:\mathbb R\to\mathbb R^n $ | | @#55CCEE: context ​    | @#55CCEE: $ b:\mathbb R\to\mathbb R^n $ |
- 
 | @#FFBB00: definiendum | @#FFBB00: $ y \in \mathrm{it} $ | | @#FFBB00: definiendum | @#FFBB00: $ y \in \mathrm{it} $ |
- 
 | @#55EE55: postulate ​  | @#55EE55: $ y:​C^k(\mathbb R,\mathbb R^n) $  | | @#55EE55: postulate ​  | @#55EE55: $ y:​C^k(\mathbb R,\mathbb R^n) $  |
- 
 | @#55EE55: postulate ​  | @#55EE55: $ y'​(t)=A(t)\ y(t)+b(t) $ | | @#55EE55: postulate ​  | @#55EE55: $ y'​(t)=A(t)\ y(t)+b(t) $ |
  
-==== Discussion ====+-----
 === Theorems === === Theorems ===
 There exists a matrix $S(t,s)$ such that the solution of the equation above is of the form  There exists a matrix $S(t,s)$ such that the solution of the equation above is of the form 
Line 40: Line 37:
 === Reference === === Reference ===
 Wikipedia: [[http://​en.wikipedia.org/​wiki/​Dyson_series|Dyson series]] Wikipedia: [[http://​en.wikipedia.org/​wiki/​Dyson_series|Dyson series]]
-==== Parents ====+ 
 +-----
 === Context === === Context ===
 [[Square matrix]] [[Square matrix]]
 === Subset of === === Subset of ===
 [[ODE system]] [[ODE system]]
Link to graph
Log In
Improvements of the human condition