Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
locally_finite_topology_subset [2016/09/14 15:31]
nikolaj
locally_finite_topology_subset [2016/09/15 01:42] (current)
nikolaj
Line 2: Line 2:
 ==== Set ==== ==== Set ====
 | @#55CCEE: context ​    | @#55CCEE: $\langle X,\mathcal T\rangle$ ... topological space | | @#55CCEE: context ​    | @#55CCEE: $\langle X,\mathcal T\rangle$ ... topological space |
-| @#FFBB00: definiendum | @#FFBB00: $Cin it | +| @#FFBB00: definiendum | @#FFBB00: ${\mathcal ​Cin it | 
-| @#AAFFAA: inclusion ​  | @#AAFFAA: $C\subset \mathcal T$ |+| @#AAFFAA: inclusion ​  | @#AAFFAA: ${\mathcal ​C}\subset \mathcal T$ |
 | @#FFFDDD: for all     | @#FFFDDD: $x\in X$ | | @#FFFDDD: for all     | @#FFFDDD: $x\in X$ |
 | @#FFFDDD: exists ​     | @#FFFDDD: $V\in \mathcal T$ | | @#FFFDDD: exists ​     | @#FFFDDD: $V\in \mathcal T$ |
 | @#55EE55: postulate ​  | @#55EE55: $x\in V$ | | @#55EE55: postulate ​  | @#55EE55: $x\in V$ |
-| @#55EE55: postulate ​  | @#55EE55: $\{U\in C\,|\,U\cap V\neq\emptyset\}$ ... finite |+| @#55EE55: postulate ​  | @#55EE55: $\{U\in ​{\mathcal ​C}\,|\,U\cap V\neq\emptyset\}$ ... finite |
  
 ----- -----
 === Idea === === Idea ===
-Like many properties, this is a notion of smallness, and more particularly, ​not smallness of a subset of $X$ but smallness of a collection $C$ of subsets of $X$.+Like many properties, this is a notion of smallness. It'​s ​not about the smallness of a subset ​$U$ of $X$but smallness of a collection ${\mathcal ​C}$ of subsets ​$U$ of $X$. 
  
-You choose ​small sample of neighborhoods (the sets $V\in\mathcal T$) and $C$ ought to be countable w.r.t. ​to that sample, i.e. pro $V$.+You may consider ​well choosen ​sample of neighborhoods (the sets $V\in{\mathcal T}$) and ${\mathcal ​C}$ ought to be finite with respect ​to that sample ​(finite //pro// $V$)
  
 === Dicussion === === Dicussion ===
-A topologal space is paracompact if it has a cover with that property.+  * A topologal space is //paracompact// if it any cover has a refinement ​with that property
 +  * The sample of $V$'s above may be very big, so ${\mathcal C}$ is really only small w.r.t. the sample. In a //compact// space, on the other hand, the cover itself is finite (and you don't need to consider that sample).  
 +  * Note that the name //locally compact// is already used for the situation where every point $x\in X$ has a compact neighborhood $V$
  
 === Reference === === Reference ===
Link to graph
Log In
Improvements of the human condition