Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
macroscopic_observables_from_kinetic_theory [2014/02/13 16:13]
127.0.0.1 external edit
macroscopic_observables_from_kinetic_theory [2014/02/22 17:12]
nikolaj
Line 11: Line 11:
 Number density/​concentration,​ mass density, mean velocity, velocity deviation from the mean velocity, particle flux, current density, current, pressure, thermal velocity, energy and flux in abolute and comoving frame, and lastly temperature. Number density/​concentration,​ mass density, mean velocity, velocity deviation from the mean velocity, particle flux, current density, current, pressure, thermal velocity, energy and flux in abolute and comoving frame, and lastly temperature.
  
-| @#DDDDDD: $ :: A({\bf v}) $ | +| @#AADDEE: $ :: A({\bf v}) $ | 
-| @#DDDDDD: $ \langle A \rangle({\bf x},t) \equiv \int\ A({\bf v})\ f({\bf x},{\bf v},t)\ \mathrm d^3v$ |  +| @#AADDEE: $ \langle A \rangle({\bf x},t) \equiv \int\ A({\bf v})\ f({\bf x},{\bf v},t)\ \mathrm d^3v$ |  
-| $i,​j\in\{1,​2,​3\}$ | +| @#AADDEE: $ v({\bf v}):={\bf v} $ |
-| @#DDDDDD: $ v({\bf v}):={\bf v} $ |+
  
 | @#FFBB00: $ n := \langle \mathrm{1} \rangle $ | | @#FFBB00: $ n := \langle \mathrm{1} \rangle $ |
Line 31: Line 30:
 | @#FFBB00: $ e := \rho \frac{1}{2}V^2 $ |  | @#FFBB00: $ e := \rho \frac{1}{2}V^2 $ | 
 | @#FFBB00: $ E := \rho \frac{1}{2}C^2 $ |  | @#FFBB00: $ E := \rho \frac{1}{2}C^2 $ | 
 +
 +| @#FFBB00: $ T := E/​\left(\frac{3}{2}n\ k_B\right) $ | 
 +
 +| @#FFFDDD: $i,​j\in\{1,​2,​3\}$ |
  
 | @#FFBB00: $ q_i := \rho \frac{1}{2}\langle v^2\ v_i\rangle $ |  | @#FFBB00: $ q_i := \rho \frac{1}{2}\langle v^2\ v_i\rangle $ | 
 | @#FFBB00: $ Q_i := \rho \frac{1}{2}\langle c^2\ c_i\rangle $ |  | @#FFBB00: $ Q_i := \rho \frac{1}{2}\langle c^2\ c_i\rangle $ | 
- 
-| @#FFBB00: $ T := E/​\left(\frac{3}{2}n\ k_B\right) $ |  
  
 ==== Discussion ==== ==== Discussion ====
-The pressure tensor is (propotional ​to) the covarance ​matrix of $f$ w.r.t $v$ and the energy is the variance.+The pressure tensor is (proportional ​to) the covariance ​matrix of $f$ w.r.t $v$ and the energy is the variance.
  
 == Theorems == == Theorems ==
Link to graph
Log In
Improvements of the human condition