Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
macroscopic_observables_from_kinetic_theory [2014/02/22 17:12]
nikolaj
macroscopic_observables_from_kinetic_theory [2014/03/21 11:11] (current)
Line 1: Line 1:
 ===== Macroscopic observables from kinetic theory ===== ===== Macroscopic observables from kinetic theory =====
 ==== Set ==== ==== Set ====
-| @#88DDEE: $ f $ ... one-particle reduced distribution function | +| @#55CCEE: context ​    | @#55CCEE: $ f $ ... one-particle reduced distribution function | 
-| @#DDDDDD: $ N \equiv \mathrm{dim}(\mathcal M) $ | +| @#DDDDDD: range       | @#DDDDDD: $ N \equiv \mathrm{dim}(\mathcal M) $ | 
-| @#88DDEE: $ q,m\in \mathbb R^*$  |+| @#55CCEE: context ​    | @#55CCEE: $ q,m\in \mathbb R^*$  |
  
 In terms of the phase space probability density, $f=f_1$ and $N$ is the number of described particles in the system with mass $m$ and charge $q$. In terms of the phase space probability density, $f=f_1$ and $N$ is the number of described particles in the system with mass $m$ and charge $q$.
  
-| @#FFBB00: $ \langle n,​\rho,​u,​c,​\Gamma,​j,​J,​{\mathrm p},{\mathrm P},​V,​C,​e,​E,​q,​Q,​T \rangle \in \mathrm{it} $ | +| @#FFBB00: definiendum ​| @#FFBB00: $ \langle n,​\rho,​u,​c,​\Gamma,​j,​J,​{\mathrm p},{\mathrm P},​V,​C,​e,​E,​q,​Q,​T \rangle \in \mathrm{it} $ | 
  
 Number density/​concentration,​ mass density, mean velocity, velocity deviation from the mean velocity, particle flux, current density, current, pressure, thermal velocity, energy and flux in abolute and comoving frame, and lastly temperature. Number density/​concentration,​ mass density, mean velocity, velocity deviation from the mean velocity, particle flux, current density, current, pressure, thermal velocity, energy and flux in abolute and comoving frame, and lastly temperature.
  
-| @#AADDEE: $ :: A({\bf v}) $ | +| @#AADDEE: let         | @#AADDEE: $ :: A({\bf v}) $ | 
-| @#AADDEE: $ \langle A \rangle({\bf x},t) \equiv \int\ A({\bf v})\ f({\bf x},{\bf v},t)\ \mathrm d^3v$ |  +| @#AADDEE: let         | @#AADDEE: $ \langle A \rangle({\bf x},t) \equiv \int\ A({\bf v})\ f({\bf x},{\bf v},t)\ \mathrm d^3v$ |  
-| @#AADDEE: $ v({\bf v}):={\bf v} $ |+| @#AADDEE: let         | @#AADDEE: $ v({\bf v}):={\bf v} $ |
  
-| @#FFBB00$ n := \langle \mathrm{1} \rangle $ | +| @#FFFDDDfor all     | @#FFFDDD: $i,j\in\{1,2,3\}$ |
-| @#FFBB00: $ \rho := m$ |+
  
-| @#​FFBB00: ​$ u := \langle v \rangle $ | +| @#​FFBB00: ​definiendum ​| @#FFBB00: $ n := \langle \mathrm{1} \rangle ​$ | 
-| @#FFBB00: $ c({\bf x},{\bf v},t) := {\bf v}-u $ |  +| @#​FFBB00: ​definiendum ​| @#FFBB00: $ \rho := m\ n $ |
-| @#​FFBB00: ​$ \Gamma := n\ u $ |  +
-| @#FFBB00: $ := qu $ |  +
-| @#FFBB00: $ J := n\ j $ | +
  
-| @#FFBB00: $ {\mathrm p}_{ij} ​:= \rho\ \langle ​v_i\ v_j \rangle $ | +| @#FFBB00: definiendum ​| @#FFBB00: $ := \langle ​\rangle $ | 
-| @#FFBB00: $ {\mathrm P}_{ij} := \rho\ \langle c_i\ c_j \rangle ​$ |   +| @#FFBB00: definiendum ​| @#FFBB00: $ c({\bf x},{\bf v},t) := {\bf v}-u $ |  
-| @#​FFBB00: ​$ V := \langle v^2 \rangle^{\frac{1}{2}} $ | +| @#​FFBB00: ​definiendum ​| @#FFBB00: $ \Gamma ​:= n$ |  
-| @#FFBB00: $ := \langle c^2 \rangle^{\frac{1}{2}} ​$ | +| @#FFBB00: definiendum ​| @#FFBB00: $ := q$ |  
-| @#FFBB00: $ := \rho \frac{1}{2}V^2 ​$ |  +| @#FFBB00: definiendum ​| @#FFBB00: $ := n$ | 
-| @#FFBB00: $ := \rho \frac{1}{2}C^2 ​$ | +
  
-| @#FFBB00: $ := E/\left(\frac{3}{2}nk_B\right) ​$ | +| @#FFBB00: definiendum ​| @#FFBB00: $ {\mathrm p}_{ij} ​:= \rho\ \langle v_i\ v_j \rangle $ | 
 +| @#FFBB00: definiendum | @#FFBB00: $ {\mathrm P}_{ij} := \rho\ \langle c_i\ c_j \rangle $ |   
 +| @#FFBB00: definiendum | @#FFBB00: $ V := \langle v^2 \rangle^{\frac{1}{2}} $ | 
 +| @#FFBB00: definiendum | @#FFBB00: $ C := \langle c^2 \rangle^{\frac{1}{2}} $ | 
 +| @#FFBB00: definiendum | @#FFBB00: $ e := \rho \frac{1}{2}V^2 $ |  
 +| @#FFBB00: definiendum | @#FFBB00: $ E := \rho \frac{1}{2}C^2 ​$ | 
  
-| @#FFFDDD$i,​j\in\{1,​2,​3\}$ | +| @#FFBB00definiendum ​| @#FFBB00: $ q_i := \rho \frac{1}{2}\langle v^2\ v_i\rangle $ |  
- +| @#FFBB00: definiendum ​| @#FFBB00: $ Q_i := \rho \frac{1}{2}\langle c^2\ c_i\rangle ​$ |  
-| @#FFBB00: $ q_i := \rho \frac{1}{2}\langle v^2\ v_i\rangle $ |  +| @#FFBB00: definiendum | @#FFBB00: $ T := E/​\left(\frac{3}{2}n\ k_B\right) ​$ | 
-| @#FFBB00: $ Q_i := \rho \frac{1}{2}\langle c^2\ c_i\rangle $ | +
  
 ==== Discussion ==== ==== Discussion ====
Line 55: Line 54:
 In a general frame, they look a little shorter, because some partial derivatives vanish. In a general frame, they look a little shorter, because some partial derivatives vanish.
  
-After plugging in some transport coefficients relating $P$ in terms of $u$, one obtains the [[NavierStokes equations]]. +After plugging in some transport coefficients relating $P$ in terms of $u$, one obtains the [[Navier-Stokes equations]].
- +
->​[[Navier–Stokes equations]] ... Y U no link?!+
  
 == Boltzmann equation == == Boltzmann equation ==
Line 66: Line 63:
 Another one is the //absolute Druyvesteyn distribution//​ for electrons in a mass $M$ ion background and with a constant external electrical field $K$: Another one is the //absolute Druyvesteyn distribution//​ for electrons in a mass $M$ ion background and with a constant external electrical field $K$:
  
-| @#DDDDDD: $ s \equiv (M/​6m)\left(\frac{K\ l}{k_B T}\right)^2 $ | +| @#DDDDDD: range       | @#DDDDDD: $ s \equiv (M/​6m)\left(\frac{K\ l}{k_B T}\right)^2 $ | 
  
 The mean free path $l$ appears as a parameter. The mean free path $l$ appears as a parameter.
Link to graph
Log In
Improvements of the human condition