Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
magic_gaussian_integral [2014/03/21 11:13]
nikolaj
magic_gaussian_integral [2015/04/15 13:42]
nikolaj
Line 12: Line 12:
 That whole integral is just a showoff generalization of the one dimensional integral ​ That whole integral is just a showoff generalization of the one dimensional integral ​
  
-^ $I_a:​=\int_{-\infty}^\infty\mathrm e^{-\tfrac{1}{2}a\,​\phi^2}\mathrm d\phi =(2\pi)^{1/​2}a^{-1/​2}$ ^+^ $I_a:​=\int_{-\infty}^\infty{\mathrm e}^{-\tfrac{1}{2}a\,​\phi^2}\mathrm d\phi =(2\pi)^{1/​2}a^{-1/​2}$ ^
  
-which is obtained with the basic trick of switching to polar coordinates. Adding a imaginary linear term in the exponent results in the statement that the Fourier transform of a Gaussian curve is again a Gaussian curve+which is obtained, for example, ​with the basic trick of switching to polar coordinates. ​ 
 + 
 +Remark: Having found the normalization of ${\mathrm e}^{-\tfrac{1}{2}a\,​\phi^2}$ lets us define the function ${\mathrm{erf}}$ with $\lim_{d\to\infty}{\mathrm{erf}}(d)=1$. Then we can show that $\sum_{k=0}^\infty\frac{1}{k!}(-1)^k\frac{d^{2k+1}}{2k+1}=\frac{1}{2}\pi^\frac{1}{2}{\mathrm{erf}}(d)$ and with $\int_0^d(-\phi^2)^k{\mathrm d}\phi = (-1)^k\frac{d^{2k+1}}{2k+1}$ we can evaluate the initial integral on $[-d,d]$, not just all of $\mathbb R$. 
 + 
 +Adding a imaginary linear term in the exponent results in the statement that the Fourier transform of a Gaussian curve is again a Gaussian curve
  
 ^ $\int_{-\infty}^\infty\mathrm e^{-\tfrac{1}{2}a\,​\phi^2+i\,​\phi\,​j}\mathrm d\phi =I_a\cdot\mathrm e^{-\tfrac{1}{2}j^2\,​a^{-1}}$ ^ ^ $\int_{-\infty}^\infty\mathrm e^{-\tfrac{1}{2}a\,​\phi^2+i\,​\phi\,​j}\mathrm d\phi =I_a\cdot\mathrm e^{-\tfrac{1}{2}j^2\,​a^{-1}}$ ^
Link to graph
Log In
Improvements of the human condition