Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
magic_gaussian_integral [2014/03/21 11:13]
nikolaj
magic_gaussian_integral [2015/04/15 13:43]
nikolaj
Line 12: Line 12:
 That whole integral is just a showoff generalization of the one dimensional integral ​ That whole integral is just a showoff generalization of the one dimensional integral ​
  
-^ $I_a:​=\int_{-\infty}^\infty\mathrm e^{-\tfrac{1}{2}a\,​\phi^2}\mathrm d\phi =(2\pi)^{1/​2}a^{-1/​2}$ ^+^ $I_a:​=\int_{-\infty}^\infty{\mathrm e}^{-\tfrac{1}{2}a\,​\phi^2}\mathrm d\phi =(2\pi)^{1/​2}a^{-1/​2}$ ^
  
-which is obtained with the basic trick of switching to polar coordinates. Adding a imaginary linear term in the exponent results in the statement that the Fourier transform of a Gaussian curve is again a Gaussian curve+which is obtained, for example, ​with the basic trick of switching to polar coordinates. ​ 
 + 
 +(Side remark: Having found the normalization of ${\mathrm e}^{-\tfrac{1}{2}a\,​\phi^2}$ lets us define the function ${\mathrm{erf}}$ with $\lim_{d\to\infty}{\mathrm{erf}}(d)=1$. Then we can show that $\frac{1}{2}\pi^\frac{1}{2}{\mathrm{erf}}(d) = \sum_{k=0}^\infty\frac{1}{k!}(-1)^k\frac{d^{2k+1}}{2k+1}$ and with $\int_0^d(-\phi^2)^k{\mathrm d}\phi = (-1)^k\frac{d^{2k+1}}{2k+1}$ we can evaluate the initial integral on $[-d,d]$, not just all of $\mathbb R$.) 
 + 
 +Adding a imaginary linear term in the exponent results in the statement that the Fourier transform of a Gaussian curve is again a Gaussian curve
  
 ^ $\int_{-\infty}^\infty\mathrm e^{-\tfrac{1}{2}a\,​\phi^2+i\,​\phi\,​j}\mathrm d\phi =I_a\cdot\mathrm e^{-\tfrac{1}{2}j^2\,​a^{-1}}$ ^ ^ $\int_{-\infty}^\infty\mathrm e^{-\tfrac{1}{2}a\,​\phi^2+i\,​\phi\,​j}\mathrm d\phi =I_a\cdot\mathrm e^{-\tfrac{1}{2}j^2\,​a^{-1}}$ ^
Link to graph
Log In
Improvements of the human condition