Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
means_._note [2015/06/20 17:04]
nikolaj
means_._note [2015/06/20 17:05]
nikolaj
Line 8: Line 8:
 | @#FFBB00: definiendum | @#FFBB00: $\langle f\rangle:​=I(f\cdot w)\cdot I(w)^{-1}$ | | @#FFBB00: definiendum | @#FFBB00: $\langle f\rangle:​=I(f\cdot w)\cdot I(w)^{-1}$ |
  
-e.g. $\langle f\rangle_{[a,​b]}:​=\dfrac{\int_a^bf(x)\,​{\mathrm dx}}{b-a}$+== Real functions == 
 + 
 +E.g. $\langle f\rangle_{[a,​b]}:​=\dfrac{\int_a^bf(x)\,​{\mathrm dx}}{b-a}$
  
 where $[a,​b]\subseteq{\mathbb R}$ and $w(x):=1$. where $[a,​b]\subseteq{\mathbb R}$ and $w(x):=1$.
  
-== Note ==+== Minus twelve ​==
  
 I use this in the context of [[Minus twelve . Note]]. For $z\in(0,​1)$,​ we find I use this in the context of [[Minus twelve . Note]]. For $z\in(0,​1)$,​ we find
Line 18: Line 20:
 $\sum_{k=0}^\infty \langle q\mapsto q\,​z^q\rangle_{[k,​k+1]}=\dfrac{1}{\ln(z)^2}$,​ $\sum_{k=0}^\infty \langle q\mapsto q\,​z^q\rangle_{[k,​k+1]}=\dfrac{1}{\ln(z)^2}$,​
  
-i.e.+i.e. (see [[Natural logarithm of complex numbers]])
  
 $\sum_{k=0}^\infty \left(k\,​z^k-\langle q\mapsto q\,​z^q\rangle_{[k,​k+1]}\right)=\dfrac{z}{(z-1)^2}-\dfrac{1}{\ln(z)^2}=-\dfrac{1}{12}+{\mathcal O}\left((z-1)^1\right)$ $\sum_{k=0}^\infty \left(k\,​z^k-\langle q\mapsto q\,​z^q\rangle_{[k,​k+1]}\right)=\dfrac{z}{(z-1)^2}-\dfrac{1}{\ln(z)^2}=-\dfrac{1}{12}+{\mathcal O}\left((z-1)^1\right)$
- 
-See also [[Natural logarithm of complex numbers]]. 
  
 ----- -----
 === Requirements === === Requirements ===
 [[Function integral]] [[Function integral]]
Link to graph
Log In
Improvements of the human condition