Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
minus_twelve_._note [2017/07/02 21:59]
nikolaj
minus_twelve_._note [2017/07/02 22:57]
nikolaj
Line 82: Line 82:
 We have the Taylor expansion for the logarithm We have the Taylor expansion for the logarithm
  
-$$\log(1+r) = \sum_{k=1}^{\infty}\dfrac{1}{k}(-r)^k ​ = r - \dfrac{1}{2}r^2 + \dfrac{1}{3}r^3 + {\mathcal O}(r^4) = r \left(1 - \dfrac{1}{2}r + \dfrac{1}{3}r^2 + {\mathcal O}(r^3) \right) $$+$$\log(1+r) = \sum_{k=1}^{\infty}\dfrac{1}{k}(-r)^k ​ = r - \dfrac{1}{2}r^2 + \dfrac{1}{3}r^3 + {\mathcal O}(r^4)= $$ 
 +$$= r \left(1 - \dfrac{1}{2}r + \dfrac{1}{3}r^2 + {\mathcal O}(r^3) \right) $$
  
 and using the geometric series expansion, we get and using the geometric series expansion, we get
  
-$$\dfrac {1} { \log(1+r)} = \dfrac {1} {r} \dfrac {1} {1 - \dfrac{1}{2}r + \dfrac{1}{3}r^2 + {\mathcal O}(r^3) } = \dfrac {1} {r} \left( 1 + \dfrac{1}{2} r - \dfrac{1}{2\cdot 2\cdot 3} r^2 + {\mathcal O}(r^3) \right) = \dfrac {1} {r} + \dfrac{1}{2} - \dfrac{1}{12} r + {\mathcal O}(r^2)$$+$$\dfrac {1} { \log(1+r)} = \dfrac {1} {r} \dfrac {1} {1 - \dfrac{1}{2}r + \dfrac{1}{3}r^2 + {\mathcal O}(r^3) } =$$ 
 +$$= \dfrac {1} {r} \left( 1 + \dfrac{1}{2} r - \dfrac{1}{2\cdot 2\cdot 3} r^2 + {\mathcal O}(r^3) \right) = \dfrac {1} {r} + \dfrac{1}{2} - \dfrac{1}{12} r + {\mathcal O}(r^2)$$
  
 With $r=z-1$ we see  With $r=z-1$ we see 
Link to graph
Log In
Improvements of the human condition