Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
minus_twelve_._note [2017/07/02 21:59]
nikolaj
minus_twelve_._note [2017/11/25 23:02]
nikolaj
Line 44: Line 44:
  
 Consider this little gimmick: The difference between the integral and the sum of a smooth function is given by a very particular sum that involves $\dfrac{1}{-12}$ at the second place. It starts as out as Consider this little gimmick: The difference between the integral and the sum of a smooth function is given by a very particular sum that involves $\dfrac{1}{-12}$ at the second place. It starts as out as
 +
 $$\int_a^b f(n)\,​{\mathrm d}n = \sum_{n=a}^{b-1} f(n) + \left(\lim_{x\to b}-\lim_{x\to a}\right)\left(\dfrac{1}{2}-\dfrac{1}{12}\dfrac{d}{dx}+\dots\right)f(x)$$ $$\int_a^b f(n)\,​{\mathrm d}n = \sum_{n=a}^{b-1} f(n) + \left(\lim_{x\to b}-\lim_{x\to a}\right)\left(\dfrac{1}{2}-\dfrac{1}{12}\dfrac{d}{dx}+\dots\right)f(x)$$
 +
 +e.g.
 +
 +$$\int _m^n f(x)~{\rm d}x=\sum _{i=m}^n f(i)-\frac 1 2 \left( f(m)+f(n) \right) -\frac 1{12}\left( f'​(n)-f'​(m)\right) + \frac 1{720}\left( f'''​(n)-f'''​(m)\right) + \cdots.$$
 +
 and if you want to see a full version, check out the 300 year old //​Euler–Maclaurin formula//. The building blocks of many functions are monomials $f(n)=n^{k-1}$ and for those the formula is particularly simple, because most all high derivatives vanish. The formula then tells us that  and if you want to see a full version, check out the 300 year old //​Euler–Maclaurin formula//. The building blocks of many functions are monomials $f(n)=n^{k-1}$ and for those the formula is particularly simple, because most all high derivatives vanish. The formula then tells us that 
 $$\int_a^b n^{k-1}\,​{\mathrm d}n=\frac{b^k}{k}-\frac{a^k}{k}$$ ​ $$\int_a^b n^{k-1}\,​{\mathrm d}n=\frac{b^k}{k}-\frac{a^k}{k}$$ ​
Line 82: Line 88:
 We have the Taylor expansion for the logarithm We have the Taylor expansion for the logarithm
  
-$$\log(1+r) = \sum_{k=1}^{\infty}\dfrac{1}{k}(-r)^k ​ = r - \dfrac{1}{2}r^2 + \dfrac{1}{3}r^3 + {\mathcal O}(r^4) = r \left(1 - \dfrac{1}{2}r + \dfrac{1}{3}r^2 + {\mathcal O}(r^3) \right) $$+$$\log(1+r) = \sum_{k=1}^{\infty}\dfrac{1}{k}(-r)^k ​ = r - \dfrac{1}{2}r^2 + \dfrac{1}{3}r^3 + {\mathcal O}(r^4)= $$ 
 +$$= r \left(1 - \dfrac{1}{2}r + \dfrac{1}{3}r^2 + {\mathcal O}(r^3) \right) $$
  
 and using the geometric series expansion, we get and using the geometric series expansion, we get
  
-$$\dfrac {1} { \log(1+r)} = \dfrac {1} {r} \dfrac {1} {1 - \dfrac{1}{2}r + \dfrac{1}{3}r^2 + {\mathcal O}(r^3) } = \dfrac {1} {r} \left( 1 + \dfrac{1}{2} r - \dfrac{1}{2\cdot 2\cdot 3} r^2 + {\mathcal O}(r^3) \right) = \dfrac {1} {r} + \dfrac{1}{2} - \dfrac{1}{12} r + {\mathcal O}(r^2)$$+$$\dfrac {1} { \log(1+r)} = \dfrac {1} {r} \dfrac {1} {1 - \dfrac{1}{2}r + \dfrac{1}{3}r^2 + {\mathcal O}(r^3) } =$$ 
 +$$= \dfrac {1} {r} \left( 1 + \dfrac{1}{2} r - \dfrac{1}{2\cdot 2\cdot 3} r^2 + {\mathcal O}(r^3) \right) = \dfrac {1} {r} + \dfrac{1}{2} - \dfrac{1}{12} r + {\mathcal O}(r^2)$$
  
 With $r=z-1$ we see  With $r=z-1$ we see 
Link to graph
Log In
Improvements of the human condition