Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
minus_twelve_._note [2019/09/09 22:33]
nikolaj
minus_twelve_._note [2019/09/21 00:34]
nikolaj
Line 56: Line 56:
  
 So as an example, with $k=3,​a=2,​b=4$ you get the identity So as an example, with $k=3,​a=2,​b=4$ you get the identity
-$$\frac{1}{3}(4^3-2^3)=(2^2+3^2)+\frac{1}{2}(4^2-2^2)-\frac{1}{12}\,​2\,​(4^1-2^1)$$+$$\frac{1}{3}(4^3-2^3)=(2^2+(4-1)^2)+\frac{1}{2}(4^2-2^2)-\frac{1}{12}\,​2\,​(4^1-2^1)$$
 and there are literally infinitely many identities involving $-\frac{1}{12}$ because of this formula. In case you're wondering, both sides of the equation above simplify to $\tfrac{56}{3}$. and there are literally infinitely many identities involving $-\frac{1}{12}$ because of this formula. In case you're wondering, both sides of the equation above simplify to $\tfrac{56}{3}$.
  
Line 120: Line 120:
 The geometric series for z in (0,1) is The geometric series for z in (0,1) is
  
-[math] ​\sum_{n=0}^\infty z^n = \dfrac {1} {1-z} [/​math] ​+\sum_{n=0}^\infty z^n = \dfrac {1} {1-z} 
  
 The smooth analogous is The smooth analogous is
  
-[math] ​\int_0^\infty z^n \, d n = \int_0^\infty e^{ n \, \log (z) } \ d n = \dfrac {1} {-\log(z)} ​[/​math] ​+\int_0^\infty z^n \, d n = \int_0^\infty e^{ n \, \log (z) } \ d n = \dfrac {1} {-\log(z)} ​
  
-Applying  ​[math] ​z \dfrac {d} {dz} [/​math] ​to the first yields+Applying  ​z \dfrac {d} {dz} to the first yields
  
-[math] ​z \dfrac {z} {dz} \dfrac {1} {1-z} = \sum_{n=0}^\infty n \, z^n [/​math] ​+z \dfrac {z} {dz} \dfrac {1} {1-z} = \sum_{n=0}^\infty n \, z^n 
  
 and applying it to the second yields and applying it to the second yields
  
-[math] ​z \dfrac {z} {dz} \dfrac{1} {-\log(z)} = \dfrac {1} { \log(z)^2 } [/​math] ​+z \dfrac {z} {dz} \dfrac{1} {-\log(z)} = \dfrac {1} { \log(z)^2 } 
  
 How do those two differ? How do those two differ?
Line 138: Line 138:
 We have the Taylor expansion We have the Taylor expansion
  
-[math] ​\log(1+r) = \sum_{k=1}^{\infty} \dfrac {1} {k} (-r)^k = r - \dfrac {1} {2} r^2 + \dfrac {1} {3} r^3 +  O (r^4) = r \left( 1 - \dfrac {1} {2} r + \dfrac {1} {3} r^2 + O (r^3) \right) ​[/​math] ​+\log(1+r) = \sum_{k=1}^{\infty} \dfrac {1} {k} (-r)^k = r - \dfrac {1} {2} r^2 + \dfrac {1} {3} r^3 +  O (r^4) = r \left( 1 - \dfrac {1} {2} r + \dfrac {1} {3} r^2 + O (r^3) \right) ​
  
 Using the geometric series expansion, we get Using the geometric series expansion, we get
  
-[math] ​\dfrac {1} { \log (1+r) } = \dfrac {1} {r} \dfrac {1} {1 - \dfrac {1} {2} r + \dfrac {1} {3} r^2 +  O (r^3) } = \dfrac {1} {r} \left( 1 + \dfrac {1} {2} r - \dfrac {1} { 2 \cdot 2 \cdot 3 } r^2 +  O (r^3) \right) = \dfrac {1} {r} + \dfrac {1} {2} - \dfrac {1} {12} r +  O (r^2) [/​math] ​+\dfrac {1} { \log (1+r) } = \dfrac {1} {r} \dfrac {1} {1 - \dfrac {1} {2} r + \dfrac {1} {3} r^2 +  O (r^3) } = \dfrac {1} {r} \left( 1 + \dfrac {1} {2} r - \dfrac {1} { 2 \cdot 2 \cdot 3 } r^2 +  O (r^3) \right) = \dfrac {1} {r} + \dfrac {1} {2} - \dfrac {1} {12} r +  O (r^2) 
  
 With  r=z-1 we see  With  r=z-1 we see 
  
-[math] ​\dfrac {1} { \log(z) } = - \dfrac {1} {1-z} + \dfrac {1} {2} - \dfrac {1} {12} (z-1) +  O ((z-1)^2) ​[/​math] ​+\dfrac {1} { \log(z) } = - \dfrac {1} {1-z} + \dfrac {1} {2} - \dfrac {1} {12} (z-1) +  O ((z-1)^2) ​
  
 and taking the derivative, we get and taking the derivative, we get
  
- [math] ​\sum_{n=0}^\infty n \, z^n - \dfrac {1} { \log(z)^2 } = - \dfrac {1} {12} +  O ((z-1)) ​[/​math] ​+ \sum_{n=0}^\infty n \, z^n - \dfrac {1} { \log(z)^2 } = - \dfrac {1} {12} +  O ((z-1)) ​
  
-For z to 1 this says 1+2+3+4+... minus a 1/log^2 divergence is [math]- \dfrac {1} {12} [/math]+For z to 1 this says 1+2+3+4+... minus a 1/log^2 divergence is $- \dfrac {1} {12} $
  
-For gathering the data bits [math]z^n[/math], that limit doesn’t exist for neither the operation ​[math]\sum_{n=0}^\infty[/​math] ​nor [math]\int_0^\infty dn[/math], but it does for [math]\sum_{n=0}^\infty - \int_0^\infty dn[/math]+For gathering the data bits $z^n$, that limit doesn’t exist for neither the operation ​$\sum_{n=0}^\inftynor $\int_0^\infty dn$, but it does for $\sum_{n=0}^\infty - \int_0^\infty dn$
  
 The space(time) your physical field theories are defined on generally fuck with you, but there are often such systematic renormalizations of your physical expressions,​ and for the addition of integers it relates to that relational. The space(time) your physical field theories are defined on generally fuck with you, but there are often such systematic renormalizations of your physical expressions,​ and for the addition of integers it relates to that relational.
Link to graph
Log In
Improvements of the human condition