Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
my_nice_nats [2014/11/01 18:16]
nikolaj
my_nice_nats [2014/12/04 16:29]
nikolaj
Line 4: Line 4:
 | @#55CCEE: context ​    | @#55CCEE: $G$ in ${\bf C}\longrightarrow{\bf D}$ | | @#55CCEE: context ​    | @#55CCEE: $G$ in ${\bf C}\longrightarrow{\bf D}$ |
 | @#FFBB00: definiendum | @#FFBB00: $\langle\alpha,​\beta\rangle$ in it | | @#FFBB00: definiendum | @#FFBB00: $\langle\alpha,​\beta\rangle$ in it |
-| @#AAFFAA: inclusion ​  | @#AAFFAA: $\alpha:\mathrm{nat}(FG,1_{\bf C})$ | +| @#AAFFAA: inclusion ​  | @#AAFFAA: $\alpha:FG\xrightarrow{\bullet}1_{\bf C}$ | 
-| @#AAFFAA: inclusion ​  | @#AAFFAA: $\beta:\mathrm{nat}(1_{\bf D},GF)$ |+| @#AAFFAA: inclusion ​  | @#AAFFAA: $\beta:​1_{\bf D}\xrightarrow{\bullet}GF$ |
  
 ==== Discussion ==== ==== Discussion ====
-That silly name... I made it up. +That silly name ... I made it up. 
  
-=== In words === +The natural transformation ​$\beta:1_{\bf D}\xrightarrow{\bullet}GFsqueezes every set $X\in {\bf D}$ into set $GFX\in {\bf D}$ (although this need not be surjective or injective). The natural transformation $\alpha:FG\xrightarrow{\bullet}1_{\bf C}$ squeezes all sets $FGX$ in the image of $FG$ back into $X$. The latter operation gets rid of lots $FG$'s without changing the structural properties of ${\bf C}$.
-Here we have a situation where there are two functors, which don't really deform the category ​${\bf C}$ all that much: They are tame enough so that, by a natural transformation $\alpha:\mathrm{nat}(FG,1_{\bf C})$, their composite effect can be repaired ​back to unity.+
  
-The point is that [[my equivalence of categories]] and [[Counit-unit adjunction]] are two different important special cases of nice nats.+The point is that [[my equivalence of categories]] and [[Counit-unit adjunction]] are two different important special cases of nice nats. In the former case, the two nats actually shift the whole content of a category internally. In the latter case, the two nats end up defining the shifting operations of a [[monad]]. 
 + 
 +=== Theorems === 
 +Only when the nats are isomorphisms (as in [[my equivalence of categories]]) is $F$ fully faithful and dense.
  
 ==== Parents ==== ==== Parents ====
Link to graph
Log In
Improvements of the human condition