# Differences

This shows you the differences between two versions of the page.

 natural_logarithm_of_complex_numbers [2016/05/05 17:13]nikolaj natural_logarithm_of_complex_numbers [2016/07/22 15:08] (current)nikolaj Both sides previous revision Previous revision 2016/07/22 15:08 nikolaj 2016/05/05 17:13 nikolaj 2016/05/05 17:06 nikolaj 2015/06/26 22:07 nikolaj 2015/06/26 10:15 nikolaj 2015/06/26 10:14 nikolaj 2015/06/26 10:11 nikolaj 2015/06/20 16:50 nikolaj 2015/06/20 16:46 nikolaj 2014/06/08 00:11 nikolaj 2014/03/24 18:18 nikolaj 2014/03/24 18:17 nikolaj 2014/03/24 18:16 nikolaj 2014/03/24 18:16 nikolaj 2014/03/24 18:15 nikolaj 2014/03/24 18:15 nikolaj 2014/03/24 18:14 nikolaj 2014/03/24 18:13 nikolaj 2014/03/21 11:11 external edit2014/02/25 21:24 nikolaj old revision restored (2014/02/13 16:13) 2016/07/22 15:08 nikolaj 2016/05/05 17:13 nikolaj 2016/05/05 17:06 nikolaj 2015/06/26 22:07 nikolaj 2015/06/26 10:15 nikolaj 2015/06/26 10:14 nikolaj 2015/06/26 10:11 nikolaj 2015/06/20 16:50 nikolaj 2015/06/20 16:46 nikolaj 2014/06/08 00:11 nikolaj 2014/03/24 18:18 nikolaj 2014/03/24 18:17 nikolaj 2014/03/24 18:16 nikolaj 2014/03/24 18:16 nikolaj 2014/03/24 18:15 nikolaj 2014/03/24 18:15 nikolaj 2014/03/24 18:14 nikolaj 2014/03/24 18:13 nikolaj 2014/03/21 11:11 external edit2014/02/25 21:24 nikolaj old revision restored (2014/02/13 16:13) Line 6: Line 6: ----- ----- >todo: [[Complex argument]] >todo: [[Complex argument]] + + == Limits == + $\lim_{x\to 0}x\ln(x)=0$ == Differentiation and integrals == == Differentiation and integrals == - $\int \left(x^n\right)'​\ln(x^n)\,​{\mathrm d}x=x^n\left(\ln(x^n)-1\right)$ + $\int \ln(x^n)\,​{\mathrm d}x^n=\int \left(x^n\right)'​\ln(x^n)\,​{\mathrm d}x=x^n\left(\ln(x^n)-1\right)$ == Series == == Series ==