# Differences

This shows you the differences between two versions of the page.

 normalized_fox-wright_function [2015/12/17 13:29]nikolaj normalized_fox-wright_function [2015/12/25 17:19]nikolaj Both sides previous revision Previous revision 2015/12/25 17:19 nikolaj 2015/12/17 13:29 nikolaj 2015/12/16 14:00 nikolaj 2015/12/15 16:58 nikolaj 2015/12/15 16:53 nikolaj 2015/12/15 16:52 nikolaj 2015/12/15 09:49 nikolaj 2015/12/15 09:48 nikolaj 2015/12/15 09:39 nikolaj 2015/12/15 09:35 nikolaj 2015/12/15 09:29 nikolaj 2015/12/15 09:27 nikolaj 2015/12/14 19:27 nikolaj 2015/12/14 19:27 nikolaj 2015/12/14 19:27 nikolaj 2015/12/14 19:26 nikolaj 2015/12/14 19:26 nikolaj 2015/12/14 19:23 nikolaj 2015/12/14 19:23 nikolaj 2015/12/14 19:22 nikolaj 2015/12/14 19:21 nikolaj 2015/12/14 19:19 nikolaj 2015/12/14 19:19 nikolaj 2015/12/14 19:19 nikolaj 2015/12/14 19:18 nikolaj 2015/12/14 19:18 nikolaj 2015/12/14 19:14 nikolaj 2015/12/25 17:19 nikolaj 2015/12/17 13:29 nikolaj 2015/12/16 14:00 nikolaj 2015/12/15 16:58 nikolaj 2015/12/15 16:53 nikolaj 2015/12/15 16:52 nikolaj 2015/12/15 09:49 nikolaj 2015/12/15 09:48 nikolaj 2015/12/15 09:39 nikolaj 2015/12/15 09:35 nikolaj 2015/12/15 09:29 nikolaj 2015/12/15 09:27 nikolaj 2015/12/14 19:27 nikolaj 2015/12/14 19:27 nikolaj 2015/12/14 19:27 nikolaj 2015/12/14 19:26 nikolaj 2015/12/14 19:26 nikolaj 2015/12/14 19:23 nikolaj 2015/12/14 19:23 nikolaj 2015/12/14 19:22 nikolaj 2015/12/14 19:21 nikolaj 2015/12/14 19:19 nikolaj 2015/12/14 19:19 nikolaj 2015/12/14 19:19 nikolaj 2015/12/14 19:18 nikolaj 2015/12/14 19:18 nikolaj 2015/12/14 19:14 nikolaj 2015/12/14 19:13 nikolaj 2015/12/14 19:12 nikolaj 2015/12/14 19:11 nikolaj old revision restored (2015/12/14 19:01) Line 19: Line 19: So an expansion coefficient of ${}_p\Psi_q^*$ is a fraction of products with factors $\Gamma(a_m+A_m\cdot{n})\,/​\,​\Gamma(a_m)$,​ which are essentially also a product consisting of equidistant factors. So an expansion coefficient of ${}_p\Psi_q^*$ is a fraction of products with factors $\Gamma(a_m+A_m\cdot{n})\,/​\,​\Gamma(a_m)$,​ which are essentially also a product consisting of equidistant factors. - E.g. at $n=5$, the context $\langle a_1,​A_1\rangle=\langle 5,1\rangle$ gives a multiplicative ​of contribution ​ + E.g. at $n=5$, the context $\langle a_1,​A_1\rangle=\langle 5,1\rangle$ gives a multiplicative contribution ​ $\dfrac{\Gamma(4+5)}{\Gamma(4)} = 4 \cdot 5\cdot 6\cdot 7\cdot 8$. $\dfrac{\Gamma(4+5)}{\Gamma(4)} = 4 \cdot 5\cdot 6\cdot 7\cdot 8$.