Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
optimization_set [2016/05/20 21:40]
nikolaj
optimization_set [2016/10/16 16:31]
nikolaj
Line 3: Line 3:
 | @#55CCEE: context ​    | @#55CCEE: $ B $ | | @#55CCEE: context ​    | @#55CCEE: $ B $ |
 | @#55CCEE: context ​    | @#55CCEE: $ \langle Y, \le \rangle $ ... Non-strict partially ordered set | | @#55CCEE: context ​    | @#55CCEE: $ \langle Y, \le \rangle $ ... Non-strict partially ordered set |
-| @#55CCEE: context ​    | @#55CCEE: $ s:B\to Y $ | +| @#55CCEE: context ​    | @#55CCEE: $ r:B\to Y $ | 
-| @#FF9944: definition ​ | @#FF9944: $ O_s := \{\beta\in B\mid \forall(b\in ​X).\,s(\beta)\le{s(b)}\}$ |+| @#FF9944: definition ​ | @#FF9944: $ O_r := \{\beta\in B\mid \forall(b\in ​B).\,r(\beta)\le{r(b)}\}$ |
  
 ----- -----
-If ${\mathrm{min}(s)}\subseteq B$ denote the minimum values of $s$then +>todo 
 +>#tag  
 +>If p are parameters and c_p(xcurves with x_min(c_p)=f(p) knowntry to find x_min(c'​) by fitting c_p to c'. Now what's p here. Is there a scheme so that we can extend the list p to have guaranteed that there are parameters so that eventually c_p=c'?​
  
-$O_s = s^{-1}({\mathrm{min}(s)})$+If ${\mathrm{min}(r)}\subseteq Y$ denote the minimum values of $r$, then 
  
-with $s^{-1}:​{\mathcal P}Y\to{\mathcal P}B$.+$O_r = r^{-1}({\mathrm{min}(r)})$ 
 + 
 +with $r^{-1}:​{\mathcal P}Y\to{\mathcal P}B$.
  
 Compare with [[Solution set]]. Compare with [[Solution set]].
- 
-== Example == 
-For  
- 
-$s:{\mathbb R}\to{\mathbb R}$ 
- 
-$s(x):​=(x-7)^2$ 
- 
-we get  
- 
-$O_s=\{7\}$ 
  
 === Parametrized regression === === Parametrized regression ===
Line 39: Line 32:
 (the indexed subspace of $X\to Y$ is called hypotheses space) (the indexed subspace of $X\to Y$ is called hypotheses space)
  
-and find from this set find the optimal fit (given by optimal $\beta\in B$) w.r.t. loss function $V:Y\to Y$ by optimizing+and find from this set find the optimal fit (given by optimal $\beta\in B$) w.r.t. loss function ​ 
 + 
 +$V:Y\times ​Y\to Y$  
 + 
 +by optimizing
  
-$s(\beta):​=V(f(\beta,​x),​y)$+$r(\beta):​=V(f(\beta,​x),​y)$
  
 As a remark, given a function $f$ (resp. a $\beta$), the value $V(f(\beta,​x_0),​y_0)$ (or a multiple thereof) is called "​empirical risk" in Statistical learning theory. As a remark, given a function $f$ (resp. a $\beta$), the value $V(f(\beta,​x_0),​y_0)$ (or a multiple thereof) is called "​empirical risk" in Statistical learning theory.
Line 50: Line 47:
 with loss function with loss function
  
-$V(y',y)=(y'-y)^2$+$V({\hat y},y)=({\hat y}-y)\cdot({\hat y}-y)$
  
-In practice, $x_i$ may be vectors and then $w$ is taken to be an inner product.+In practice, $x_i$ may be vectors and then $V$ is taken to be an inner product.
  
 === Reference === === Reference ===
Link to graph
Log In
Improvements of the human condition