This is an old revision of the document!


Pre-Hilbert space

Definition

$V$
$\langle\mathcal V,\langle\cdot|\cdot\rangle\rangle \in \mathrm{Pre-Hilbert}(V)$
$\mathcal V \in \mathrm{VectorSpace}(V,\mathbb C)$
$\langle\cdot|\cdot\rangle:V\times V\to \mathbb C$
$u,v,w\in V$
$a,b\in \mathbb C$
$\overline{\langle v|w \rangle}=\langle w|v \rangle$
$v \ne 0 \Rightarrow \langle v|v \rangle > 0 $
$v = 0 \Rightarrow \langle v|v \rangle = 0 $
$\langle u|a\cdot v+b\cdot w \rangle = a\cdot \langle u|v \rangle+b\cdot \langle u|w \rangle $
$\langle a\cdot v+b\cdot w | u \rangle = \overline a\cdot \langle v|u \rangle+\overline b \cdot \langle w|u \rangle $

Ramifications

Discussion

A vector space is a $F$-module over $V$, where $F$ is a field, not just a ring.

One speaks of an $F$-vector space over $V$. Here $F$ and $V$ are just sets.

Reference

Wikipedia: Inner product space

Context

Subset of

Requirements

Link to graph
Log In
Improvements of the human condition