Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
probabilistic_robotics_._book [2016/10/24 21:11]
nikolaj
probabilistic_robotics_._book [2016/10/31 20:03]
nikolaj
Line 43: Line 43:
 Sections: Sections:
   - Introduction:​ "​Probabilistic state estimation algorithms compute //believe distributions//​ over possible world states"​   - Introduction:​ "​Probabilistic state estimation algorithms compute //believe distributions//​ over possible world states"​
-  - Probability theory basics+  - Probability theory basics ​(see also [[Introduction To Modern Bayesian Econometrics]])
   - Mathematical world representation   - Mathematical world representation
   - Bayes filters   - Bayes filters
Line 139: Line 139:
 This all has more connections to path integrals and stochastic integrals than I previously thought, so, to me, that's great and fun. This all has more connections to path integrals and stochastic integrals than I previously thought, so, to me, that's great and fun.
  
------ +== Exercises ==
- +
- +
- +
- +
-So I read into the Wikipedia page an think we now understand the notorious **Kalman filter**:+
  
-It's when the true state evolution is given by a linear relation+$bel_0(\neg faulty)=\frac{9}{10}$
  
-x_k = {F}_k x_{k-1} $.+$bel_0(faulty)=\frac{1}{10}$
  
-(+possibly by a noise term)+$ p(z\in [0,1]\,|\, faulty= 1 $
  
-and when the sensor is set to measure ​{H}_{k} x_k $.+p(z\notin [0,1]\,|\, faulty) = 0 $
  
-(the H-matrix can be a projectionthus taking into account that you only measure particular features of the truthand you can't catch em all.)+$ p(z\in [0,1]\,|\, \neg faulty= \frac{1}{3} $
  
-and you apply the Bayes Filter with+$ p(z\notin [0,1]\,|\, \neg faulty) = \frac{2}{3} $
  
-$ p( x_k \mid   x_{k-1}\mathcal{N} ​{F}_k x_{k-1} {Q}_k) $+$ p(faulty ​\,|\, z\in [0,1]) \propto p(z\in [0,1]\,|\, faulty)\cdot bel_0(faulty)$
  
-$ p( {z}_k\mid  x_k\mathcal{N}{H}_{k} x_k,  {R}_k) $+N = \sum_{x = faulty, \neg faulty} ​p(z\in [0,1]\,|\, x)\cdot bel_0(x)$
  
-where $ \mathcal{N}( x, \sigma^2) $ is the normal distribution,​ except of course with multivariate arguments. 
  
 ----- -----
Link to graph
Log In
Improvements of the human condition