Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
quantum_integer [2014/12/09 22:25]
nikolaj
quantum_integer [2016/07/22 18:36]
nikolaj
Line 11: Line 11:
 $[n]_{q} = q^{-f(n)/​2}q^{-1}\sum_{k=1}^n q^k = n+\tfrac{n}{2}(n-1-f(n))\cdot(q-1)+\mathcal{O}\left((q-1)^2\right)$ $[n]_{q} = q^{-f(n)/​2}q^{-1}\sum_{k=1}^n q^k = n+\tfrac{n}{2}(n-1-f(n))\cdot(q-1)+\mathcal{O}\left((q-1)^2\right)$
  
-In fact this doesn'​t require $n$ to be an integer.+In fact this doesn'​t require $n$ to be an integer. ​
  
-The case $f=0$ is often considered, and also $[n]_{q^2}$ together with $f=n-1$, where the numbers are of the form $n+\mathcal{O}\left((q-1)^2\right)$. In the imaginary direction, $q\propto\mathrm{e}^{i\varphi}$,​ this corresponds to $\lim_{\varphi\to 0}\frac{\sin(n\varphi)}{\sin(\phi)}=n$.+The case $f=0$ is often considered.
  
-Thenwith $q=r\mathrm{e}^{i\varphi}$,​ along the positive real axis number $[n]_q$ is a valley with bottom at $q=1$, where $[n]_{1}=n$,​ and along $\varphi$ you have harmonic oscillations with period depending on $n$.+Quantum aspect: $f=n-1$ gives  
 + 
 +$[n]_{q^2} = n + \mathcal{O}\left((q-1)^2\right)$.  
 + 
 +(The $q^2$ isn't necessary.) In the imaginary direction$q\propto\mathrm{e}^{i\varphi}$,​ this corresponds to $\lim_{\varphi\to 0}\frac{\sin(n\varphi)}{\sin(\phi)}=n$. 
 +With $q=r\mathrm{e}^{i\varphi}$,​ along the positive real axis number $[n]_q$ is a valley with bottom at $q=1$, where $[n]_{1}=n$,​ and along $\varphi$ you have harmonic oscillations with period depending on $n$.
  
 >I might change the exponent in $-f(n)/2$ to something else later >I might change the exponent in $-f(n)/2$ to something else later
Link to graph
Log In
Improvements of the human condition