Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Last revision Both sides next revision
reaction_rate_equation [2014/03/21 11:11]
127.0.0.1 external edit
reaction_rate_equation [2015/08/15 20:33]
nikolaj
Line 4: Line 4:
 | @#55CCEE: context ​    | @#55CCEE: $ \nu^-,​\nu^+\in\mathrm{Matrix}(R,​J,​\mathbb Q) $ | | @#55CCEE: context ​    | @#55CCEE: $ \nu^-,​\nu^+\in\mathrm{Matrix}(R,​J,​\mathbb Q) $ |
 | @#55CCEE: context ​    | @#55CCEE: $ k\in \mathbb R^R $  | | @#55CCEE: context ​    | @#55CCEE: $ k\in \mathbb R^R $  |
- 
 | @#FFBB00: definiendum | @#FFBB00: $ [A] \in \mathrm{it} $ | | @#FFBB00: definiendum | @#FFBB00: $ [A] \in \mathrm{it} $ |
- 
 | $j\in \text{range}(J)$ | | $j\in \text{range}(J)$ |
- 
 | @#55EE55: postulate ​  | @#55EE55: $ [A]:​C(\mathbb R,\mathbb R^J) $  | | @#55EE55: postulate ​  | @#55EE55: $ [A]:​C(\mathbb R,\mathbb R^J) $  |
- 
 | @#DDDDDD: range       | @#DDDDDD: $ ::[A](t) $ | | @#DDDDDD: range       | @#DDDDDD: $ ::[A](t) $ |
- 
 | @#55EE55: postulate ​  | @#55EE55: $ \frac{\partial}{\partial t}[A]_j=\sum_{r=1}^R k_r\cdot(\nu_{rj}^+-\nu_{rj}^-)\cdot\prod_{i=1}^J [A]_i^{\nu_{ri}^-} $ | | @#55EE55: postulate ​  | @#55EE55: $ \frac{\partial}{\partial t}[A]_j=\sum_{r=1}^R k_r\cdot(\nu_{rj}^+-\nu_{rj}^-)\cdot\prod_{i=1}^J [A]_i^{\nu_{ri}^-} $ |
  
Line 27: Line 22:
 e.g. the simplest carbon combustion process e.g. the simplest carbon combustion process
  
-$CH_4 + 2\ O_2 \longrightarrow ​CO_2 + 2\ H_2O $ +$\mathrm{C}\mathrm{H}_4 ​+ 2\ \mathrm{O}_2 ​\longrightarrow ​\mathrm{C}\mathrm{O}_2 ​+ 2\ \mathrm{H}_2\mathrm{O}.$
- +
-or more explicitly ​+
  
-$1\ CH_4 + 2\ O_2 + 0\ CO_2 + 0\ H_2O \longrightarrow 0\ CH_4 + 0\ O_2 + 1\ CO_2 + 2\ H_2O $+(Or more explicitly ​  
 +$1\ \mathrm{C}\mathrm{H}_4 ​+ 2\ \mathrm{O}_2 ​+ 0\ \mathrm{C}\mathrm{O}_2 ​+ 0\ \mathrm{H}_2\mathrm{O} ​\longrightarrow 0\ \mathrm{C}\mathrm{H}_4 ​+ 0\ \mathrm{O}_2 ​+ 1\ \mathrm{C}\mathrm{O}_2 ​+ 2\ \mathrm{H}_2\mathrm{O}$.)
  
 In practice, $k$ depends on the temperature,​ which, through the equation of state, can again be a nonlinear function of the concentrations. In practice, $k$ depends on the temperature,​ which, through the equation of state, can again be a nonlinear function of the concentrations.
Link to graph
Log In
Improvements of the human condition