Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
reaction_rate_equation [2014/03/21 11:11]
127.0.0.1 external edit
reaction_rate_equation [2015/08/15 20:34]
nikolaj
Line 4: Line 4:
 | @#55CCEE: context ​    | @#55CCEE: $ \nu^-,​\nu^+\in\mathrm{Matrix}(R,​J,​\mathbb Q) $ | | @#55CCEE: context ​    | @#55CCEE: $ \nu^-,​\nu^+\in\mathrm{Matrix}(R,​J,​\mathbb Q) $ |
 | @#55CCEE: context ​    | @#55CCEE: $ k\in \mathbb R^R $  | | @#55CCEE: context ​    | @#55CCEE: $ k\in \mathbb R^R $  |
- 
 | @#FFBB00: definiendum | @#FFBB00: $ [A] \in \mathrm{it} $ | | @#FFBB00: definiendum | @#FFBB00: $ [A] \in \mathrm{it} $ |
- 
 | $j\in \text{range}(J)$ | | $j\in \text{range}(J)$ |
- 
 | @#55EE55: postulate ​  | @#55EE55: $ [A]:​C(\mathbb R,\mathbb R^J) $  | | @#55EE55: postulate ​  | @#55EE55: $ [A]:​C(\mathbb R,\mathbb R^J) $  |
- 
 | @#DDDDDD: range       | @#DDDDDD: $ ::[A](t) $ | | @#DDDDDD: range       | @#DDDDDD: $ ::[A](t) $ |
- 
 | @#55EE55: postulate ​  | @#55EE55: $ \frac{\partial}{\partial t}[A]_j=\sum_{r=1}^R k_r\cdot(\nu_{rj}^+-\nu_{rj}^-)\cdot\prod_{i=1}^J [A]_i^{\nu_{ri}^-} $ | | @#55EE55: postulate ​  | @#55EE55: $ \frac{\partial}{\partial t}[A]_j=\sum_{r=1}^R k_r\cdot(\nu_{rj}^+-\nu_{rj}^-)\cdot\prod_{i=1}^J [A]_i^{\nu_{ri}^-} $ |
  
-==== Discussion ====+-----
 The quantities $R$ and $J$ denote the number of reactions and the number of different species. The quantities $R$ and $J$ denote the number of reactions and the number of different species.
 Then $\nu_{rj}^-$ and $\nu_{rj}^+$ are stochastic coefficients of the reactants and products and $k_r$ is the reaction rate coefficient of the $r$'s reaction. ​ Then $\nu_{rj}^-$ and $\nu_{rj}^+$ are stochastic coefficients of the reactants and products and $k_r$ is the reaction rate coefficient of the $r$'s reaction. ​
Line 23: Line 18:
 Non-time resolved, this reads for all $r$ Non-time resolved, this reads for all $r$
  
-$\sum_{j=1}^J \nu_{rj}^{(e)} A_j \overset{k_r}{\longrightarrow} \sum_{j=1}^J \nu_{rj}^{(p)} A_j$+$\sum_{j=1}^J \nu_{rj}^{(e)} A_j \overset{k_r}{\longrightarrow} \sum_{j=1}^J \nu_{rj}^{(p)} A_j.$
  
-e.g. the simplest carbon combustion process+For example, ​the simplest carbon combustion process
 +$\mathrm{C}\mathrm{H}_4 + 2\ \mathrm{O}_2 \longrightarrow \mathrm{C}\mathrm{O}_2 + 2\ \mathrm{H}_2\mathrm{O}.$
  
-$CH_4 + 2\ O_2 \longrightarrow ​CO_2 + 2\ H_2O $+(Or more explicitly: ​  
 +$1\ \mathrm{C}\mathrm{H}_4 ​+ 2\ \mathrm{O}_2 + 0\ \mathrm{C}\mathrm{O}_2 + 0\ \mathrm{H}_2\mathrm{O} ​\longrightarrow ​0\ \mathrm{C}\mathrm{H}_4 + 0\ \mathrm{O}_2 + 1\ \mathrm{C}\mathrm{O}_2 ​+ 2\ \mathrm{H}_2\mathrm{O}$.)
  
-or more explicitly ​+In practice, $k$ depends on the temperature,​ which, through the equation of state, can again be a nonlinear function of the concentrations.
  
-$1\ CH_4 + 2\ O_2 + 0\ CO_2 + 0\ H_2O \longrightarrow 0\ CH_4 + 0\ O_2 + 1\ CO_2 + 2\ H_2O $ 
- 
-In practice, $k$ depends on the temperature,​ which, through the equation of state, can again be a nonlinear function of the concentrations. 
 === Reference === === Reference ===
 Wikipedia: [[https://​en.wikipedia.org/​wiki/​Rate_equation|Rate equation]] Wikipedia: [[https://​en.wikipedia.org/​wiki/​Rate_equation|Rate equation]]
  
-==== Parents ====+-----
 === Subset of === === Subset of ===
 [[ODE system]] [[ODE system]]
Link to graph
Log In
Improvements of the human condition